File size: 6,016 Bytes
c58df45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#semantic_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter, defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Define colors for grammatical categories
POS_COLORS = {
    'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
    'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
    'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
    'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
}

POS_TRANSLATIONS = {
    'es': {
        'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
        'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
        'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
        'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
        'VERB': 'Verbo', 'X': 'Otro',
    },
    'en': {
        'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
        'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
        'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
        'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
        'VERB': 'Verb', 'X': 'Other',
    },
    'fr': {
        'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
        'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
        'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
        'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
        'VERB': 'Verbe', 'X': 'Autre',
    }
}

ENTITY_LABELS = {
    'es': {
        "Personas": "lightblue",
        "Lugares": "lightcoral",
        "Inventos": "lightgreen",
        "Fechas": "lightyellow",
        "Conceptos": "lightpink"
    },
    'en': {
        "People": "lightblue",
        "Places": "lightcoral",
        "Inventions": "lightgreen",
        "Dates": "lightyellow",
        "Concepts": "lightpink"
    },
    'fr': {
        "Personnes": "lightblue",
        "Lieux": "lightcoral",
        "Inventions": "lightgreen",
        "Dates": "lightyellow",
        "Concepts": "lightpink"
    }
}

def identify_and_contextualize_entities(doc, lang):
    entities = []
    for ent in doc.ents:
        # Obtener el contexto (3 palabras antes y después de la entidad)
        start = max(0, ent.start - 3)
        end = min(len(doc), ent.end + 3)
        context = doc[start:end].text
        
        # Mapear las etiquetas de spaCy a nuestras categorías
        if ent.label_ in ['PERSON', 'ORG']:
            category = "Personas" if lang == 'es' else "People" if lang == 'en' else "Personnes"
        elif ent.label_ in ['LOC', 'GPE']:
            category = "Lugares" if lang == 'es' else "Places" if lang == 'en' else "Lieux"
        elif ent.label_ in ['PRODUCT']:
            category = "Inventos" if lang == 'es' else "Inventions" if lang == 'en' else "Inventions"
        elif ent.label_ in ['DATE', 'TIME']:
            category = "Fechas" if lang == 'es' else "Dates" if lang == 'en' else "Dates"
        else:
            category = "Conceptos" if lang == 'es' else "Concepts" if lang == 'en' else "Concepts"
        
        entities.append({
            'text': ent.text,
            'label': category,
            'start': ent.start,
            'end': ent.end,
            'context': context
        })
    
    # Identificar conceptos clave (usando sustantivos y verbos más frecuentes)
    word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
    key_concepts = word_freq.most_common(10)  # Top 10 conceptos clave
    
    return entities, key_concepts

def create_concept_graph(text, concepts):
    vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform([text])
    concept_vectors = vectorizer.transform(concepts)
    similarity_matrix = cosine_similarity(concept_vectors, concept_vectors)

    G = nx.Graph()
    for i, concept in enumerate(concepts):
        G.add_node(concept)
        for j in range(i+1, len(concepts)):
            if similarity_matrix[i][j] > 0.1:
                G.add_edge(concept, concepts[j], weight=similarity_matrix[i][j])

    return G

def visualize_concept_graph(G, lang):
    fig, ax = plt.subplots(figsize=(12, 8))
    pos = nx.spring_layout(G)
    
    nx.draw_networkx_nodes(G, pos, node_size=3000, node_color='lightblue', ax=ax)
    nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
    nx.draw_networkx_edges(G, pos, width=1, ax=ax)
    
    edge_labels = nx.get_edge_attributes(G, 'weight')
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, ax=ax)

    title = {
        'es': "Relaciones Conceptuales",
        'en': "Conceptual Relations",
        'fr': "Relations Conceptuelles"
    }
    ax.set_title(title[lang], fontsize=16)
    ax.axis('off')

    return fig

def perform_semantic_analysis(text, nlp, lang):
    doc = nlp(text)

    # Identificar entidades y conceptos clave
    entities, key_concepts = identify_and_contextualize_entities(doc, lang)

    # Crear y visualizar grafo de conceptos
    concepts = [concept for concept, _ in key_concepts]
    concept_graph = create_concept_graph(text, concepts)
    relations_graph = visualize_concept_graph(concept_graph, lang)
    
    return {
        'entities': entities,
        'key_concepts': key_concepts,
        'relations_graph': relations_graph
    }

__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS']