File size: 6,016 Bytes
c58df45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
#semantic_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter, defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
'VERB': 'Verbo', 'X': 'Otro',
},
'en': {
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
'VERB': 'Verb', 'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
'VERB': 'Verbe', 'X': 'Autre',
}
}
ENTITY_LABELS = {
'es': {
"Personas": "lightblue",
"Lugares": "lightcoral",
"Inventos": "lightgreen",
"Fechas": "lightyellow",
"Conceptos": "lightpink"
},
'en': {
"People": "lightblue",
"Places": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
},
'fr': {
"Personnes": "lightblue",
"Lieux": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
}
}
def identify_and_contextualize_entities(doc, lang):
entities = []
for ent in doc.ents:
# Obtener el contexto (3 palabras antes y después de la entidad)
start = max(0, ent.start - 3)
end = min(len(doc), ent.end + 3)
context = doc[start:end].text
# Mapear las etiquetas de spaCy a nuestras categorías
if ent.label_ in ['PERSON', 'ORG']:
category = "Personas" if lang == 'es' else "People" if lang == 'en' else "Personnes"
elif ent.label_ in ['LOC', 'GPE']:
category = "Lugares" if lang == 'es' else "Places" if lang == 'en' else "Lieux"
elif ent.label_ in ['PRODUCT']:
category = "Inventos" if lang == 'es' else "Inventions" if lang == 'en' else "Inventions"
elif ent.label_ in ['DATE', 'TIME']:
category = "Fechas" if lang == 'es' else "Dates" if lang == 'en' else "Dates"
else:
category = "Conceptos" if lang == 'es' else "Concepts" if lang == 'en' else "Concepts"
entities.append({
'text': ent.text,
'label': category,
'start': ent.start,
'end': ent.end,
'context': context
})
# Identificar conceptos clave (usando sustantivos y verbos más frecuentes)
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
key_concepts = word_freq.most_common(10) # Top 10 conceptos clave
return entities, key_concepts
def create_concept_graph(text, concepts):
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform([text])
concept_vectors = vectorizer.transform(concepts)
similarity_matrix = cosine_similarity(concept_vectors, concept_vectors)
G = nx.Graph()
for i, concept in enumerate(concepts):
G.add_node(concept)
for j in range(i+1, len(concepts)):
if similarity_matrix[i][j] > 0.1:
G.add_edge(concept, concepts[j], weight=similarity_matrix[i][j])
return G
def visualize_concept_graph(G, lang):
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G)
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color='lightblue', ax=ax)
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
nx.draw_networkx_edges(G, pos, width=1, ax=ax)
edge_labels = nx.get_edge_attributes(G, 'weight')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, ax=ax)
title = {
'es': "Relaciones Conceptuales",
'en': "Conceptual Relations",
'fr': "Relations Conceptuelles"
}
ax.set_title(title[lang], fontsize=16)
ax.axis('off')
return fig
def perform_semantic_analysis(text, nlp, lang):
doc = nlp(text)
# Identificar entidades y conceptos clave
entities, key_concepts = identify_and_contextualize_entities(doc, lang)
# Crear y visualizar grafo de conceptos
concepts = [concept for concept, _ in key_concepts]
concept_graph = create_concept_graph(text, concepts)
relations_graph = visualize_concept_graph(concept_graph, lang)
return {
'entities': entities,
'key_concepts': key_concepts,
'relations_graph': relations_graph
}
__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS'] |