File size: 6,338 Bytes
c7330d5
 
 
 
 
d4a5717
c7330d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19de296
c7330d5
3f98e79
 
17a71b0
3f98e79
90e1fae
9cdec60
90e1fae
 
 
 
 
 
 
 
 
 
 
975486a
90e1fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f98e79
7e3e643
 
d4a5717
7e3e643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a5717
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#modules/semantic/semantic_interface.py
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import spacy_streamlit
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import pandas as pd
import re
import logging

# Configuración del logger
logger = logging.getLogger(__name__)

# Importaciones locales
from .semantic_process import (
    process_semantic_input,
    format_semantic_results
)

from ..utils.widget_utils import generate_unique_key
from ..database.semantic_mongo_db import store_student_semantic_result
from ..database.semantic_export import export_user_interactions

def display_semantic_interface(lang_code, nlp_models, semantic_t):
    """
    Interfaz para el análisis semántico con controles alineados horizontalmente
    """
    # Forzar la página a semántico
    st.session_state.page = 'semantic'
    
    # Inicializar estados básicos
    if 'semantic_content' not in st.session_state:
        st.session_state.semantic_content = None
    if 'semantic_analyzed' not in st.session_state:
        st.session_state.semantic_analyzed = False

    # Contenedor principal
    with st.container():
        # Una sola fila para todos los controles
        cols = st.columns([4, 2, 2, 2])
        
        # Columna 1: Carga de archivo
        with cols[0]:
            uploaded_file = st.file_uploader(
                "Upload text file",  # Simplificamos el mensaje
                type=['txt'],
                key="semantic_file_upload"
            )

        # Columna 2: Botón de análisis
        with cols[1]:
            can_analyze = uploaded_file is not None and not st.session_state.semantic_analyzed
            if st.button('Analyze', 
                        disabled=not can_analyze,
                        key="semantic_analyze"):
                if uploaded_file:
                    text_content = uploaded_file.getvalue().decode('utf-8')
                    # Realizar el análisis
                    with st.spinner("Analyzing..."):
                        analysis_result = process_semantic_input(
                            text_content,
                            lang_code,
                            nlp_models,
                            semantic_t
                        )
                        if analysis_result['success']:
                            st.session_state.semantic_result = analysis_result
                            st.session_state.semantic_analyzed = True
                            st.success("Analysis completed!")
                            
                            # Mostrar resultados
                            display_semantic_results(
                                analysis_result,
                                lang_code,
                                semantic_t
                            )

        # Columna 3: Botón de exportación
        with cols[2]:
            if st.button('Export', 
                        disabled=not st.session_state.semantic_analyzed,
                        key="semantic_export"):
                if st.session_state.semantic_analyzed:
                    try:
                        pdf_buffer = export_user_interactions(
                            st.session_state.username, 
                            'semantic'
                        )
                        st.download_button(
                            "Download PDF",
                            data=pdf_buffer,
                            file_name="semantic_analysis.pdf",
                            mime="application/pdf"
                        )
                    except Exception as e:
                        st.error(f"Error exporting: {str(e)}")

        # Columna 4: Botón de nuevo análisis
        with cols[3]:
            if st.button('New Analysis', 
                        disabled=not st.session_state.semantic_analyzed,
                        key="semantic_new"):
                st.session_state.semantic_content = None
                st.session_state.semantic_analyzed = False
                st.session_state.semantic_result = None
                st.rerun()

    # Mostrar resultados si existen
    if st.session_state.semantic_analyzed and 'semantic_result' in st.session_state:
        display_semantic_results(
            st.session_state.semantic_result,
            lang_code,
            semantic_t
        )
    elif not uploaded_file:
        st.info("Please upload a text file to begin analysis")

def display_semantic_results(result, lang_code, semantic_t):
    """
    Muestra los resultados del análisis semántico
    """
    if result is None or not result['success']:
        st.warning(semantic_t.get('no_results', 'No results available'))
        return

    analysis = result['analysis']
    
    # Crear tabs para los resultados
    tab1, tab2 = st.tabs([
        semantic_t.get('concepts_tab', 'Key Concepts Analysis'),
        semantic_t.get('entities_tab', 'Entities Analysis')
    ])
    
    # Tab 1: Conceptos Clave
    with tab1:
        col1, col2 = st.columns(2)
        
        # Columna 1: Lista de conceptos
        with col1:
            st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
            concept_text = "\n".join([
                f"• {concept} ({frequency:.2f})" 
                for concept, frequency in analysis['key_concepts']
            ])
            st.markdown(concept_text)
        
        # Columna 2: Gráfico de conceptos
        with col2:
            st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
            st.image(analysis['concept_graph'])
    
    # Tab 2: Entidades
    with tab2:
        col1, col2 = st.columns(2)
        
        # Columna 1: Lista de entidades
        with col1:
            st.subheader(semantic_t.get('identified_entities', 'Identified Entities'))
            if 'entities' in analysis:
                for entity_type, entities in analysis['entities'].items():
                    st.markdown(f"**{entity_type}**")
                    st.markdown("• " + "\n• ".join(entities))
        
        # Columna 2: Gráfico de entidades
        with col2:
            st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
            st.image(analysis['entity_graph'])