File size: 9,099 Bytes
c7330d5
 
 
 
 
d4a5717
c7330d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19de296
c7330d5
3f98e79
 
17a71b0
3f98e79
9cdec60
 
 
975486a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cdec60
975486a
9cdec60
df3c320
9cdec60
975486a
ac689f1
17a71b0
975486a
ac689f1
17a71b0
ac689f1
975486a
ac689f1
9cdec60
 
975486a
 
 
 
 
ac689f1
17a71b0
975486a
 
df3c320
ac689f1
975486a
 
 
df3c320
 
17a71b0
975486a
ac689f1
9cdec60
ac689f1
975486a
 
ac689f1
 
17a71b0
975486a
 
 
ac689f1
975486a
 
ac689f1
 
9cdec60
17a71b0
975486a
 
 
 
d4a5717
 
 
 
 
17a71b0
 
d4a5717
975486a
d4a5717
 
 
975486a
d4a5717
 
 
 
 
 
975486a
d4a5717
 
 
 
975486a
 
 
9cdec60
975486a
17a71b0
 
ac689f1
 
 
 
 
 
975486a
ac689f1
17a71b0
975486a
ac689f1
975486a
 
17a71b0
 
 
 
975486a
17a71b0
975486a
9cdec60
975486a
9cdec60
17a71b0
dd52ef3
 
975486a
 
 
3f98e79
7e3e643
 
d4a5717
7e3e643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a5717
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#modules/semantic/semantic_interface.py
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import spacy_streamlit
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import pandas as pd
import re
import logging

# Configuración del logger
logger = logging.getLogger(__name__)

# Importaciones locales
from .semantic_process import (
    process_semantic_input,
    format_semantic_results
)

from ..utils.widget_utils import generate_unique_key
from ..database.semantic_mongo_db import store_student_semantic_result
from ..database.semantic_export import export_user_interactions

def display_semantic_interface(lang_code, nlp_models, semantic_t):
    """
    Interfaz para el análisis semántico con controles alineados horizontalmente
    """
    # Mantener la página en semántico
    st.session_state.page = 'semantic'

    # Inicializar estados si no existen
    if 'semantic_file_content' not in st.session_state:
        st.session_state.semantic_file_content = None
    if 'semantic_analysis_done' not in st.session_state:
        st.session_state.semantic_analysis_done = False
    if 'semantic_analysis_counter' not in st.session_state:
        st.session_state.semantic_analysis_counter = 0

    # Estilos CSS para alinear los botones
    st.markdown("""
        <style>
        .stButton > button {
            width: 100%;
            height: 38px;
        }
        .stUploadButton > button {
            width: 100%;
            height: 38px;
        }
        div.row-widget.stButton {
            margin-top: 1px;
            margin-bottom: 1px;
        }
        </style>
    """, unsafe_allow_html=True)

    try:
        # Contenedor principal con layout fijo
        with st.container():
            # Una sola fila para todos los controles
            col_file, col_analyze, col_export, col_new = st.columns([4, 2, 2, 2])

            # Columna 1: Carga de archivo
            with col_file:
                uploaded_file = st.file_uploader(
                    semantic_t.get('file_uploader', 'Upload TXT file'),
                    type=['txt'],
                    key=f"semantic_uploader_{st.session_state.semantic_analysis_counter}"
                )
                
                if uploaded_file is not None:
                    # Actualizar el contenido del archivo
                    file_content = uploaded_file.getvalue().decode('utf-8')
                    if file_content != st.session_state.semantic_file_content:
                        st.session_state.semantic_file_content = file_content
                        st.session_state.semantic_analysis_done = False

            # Columna 2: Botón de análisis
            with col_analyze:
                analyze_enabled = uploaded_file is not None and not st.session_state.semantic_analysis_done
                analyze_button = st.button(
                    semantic_t.get('analyze_button', 'Analyze Text'),
                    disabled=not analyze_enabled,
                    key=f"analyze_button_{st.session_state.semantic_analysis_counter}",
                    use_container_width=True
                )

            # Columna 3: Botón de exportación
            with col_export:
                export_button = st.button(
                    semantic_t.get('export_button', 'Export'),
                    disabled=not st.session_state.semantic_analysis_done,
                    key=f"export_button_{st.session_state.semantic_analysis_counter}",
                    use_container_width=True
                )

            # Columna 4: Botón de nuevo análisis
            with col_new:
                new_button = st.button(
                    semantic_t.get('new_analysis', 'New Analysis'),
                    disabled=not st.session_state.semantic_analysis_done,
                    key=f"new_button_{st.session_state.semantic_analysis_counter}",
                    use_container_width=True
                )

        st.markdown("<hr style='margin: 1em 0; opacity: 0.3'>", unsafe_allow_html=True)

        # Procesar análisis cuando se presiona el botón
        if analyze_button and st.session_state.semantic_file_content:
            with st.spinner(semantic_t.get('processing', 'Processing...')):
                try:
                    analysis_result = process_semantic_input(
                        st.session_state.semantic_file_content,
                        lang_code,
                        nlp_models,
                        semantic_t
                    )
                    
                    if analysis_result['success']:
                        # Guardar resultados y actualizar estado
                        st.session_state.semantic_result = analysis_result
                        st.session_state.semantic_analysis_done = True
                        
                        # Guardar en base de datos
                        if store_student_semantic_result(
                            st.session_state.username,
                            st.session_state.semantic_file_content,
                            analysis_result['analysis']
                        ):
                            st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
                            display_semantic_results(analysis_result, lang_code, semantic_t)
                        else:
                            st.error(semantic_t.get('error_message', 'Error saving analysis'))
                    else:
                        st.error(analysis_result['message'])
                except Exception as e:
                    logger.error(f"Error en análisis: {str(e)}")
                    st.error(semantic_t.get('error_processing', f'Error: {str(e)}'))

        # Manejar exportación
        if export_button and st.session_state.semantic_analysis_done:
            try:
                pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
                st.download_button(
                    label=semantic_t.get('download_pdf', 'Download PDF'),
                    data=pdf_buffer,
                    file_name="semantic_analysis.pdf",
                    mime="application/pdf",
                    key=f"download_{st.session_state.semantic_analysis_counter}"
                )
            except Exception as e:
                st.error(f"Error exporting: {str(e)}")

        # Manejar nuevo análisis
        if new_button:
            st.session_state.semantic_file_content = None
            st.session_state.semantic_analysis_done = False
            st.session_state.semantic_result = None
            st.session_state.semantic_analysis_counter += 1
            st.rerun()

        # Mostrar resultados existentes o mensaje inicial
        if st.session_state.semantic_analysis_done and 'semantic_result' in st.session_state:
            display_semantic_results(st.session_state.semantic_result, lang_code, semantic_t)
        elif not uploaded_file:
            st.info(semantic_t.get('initial_message', 'Upload a TXT file to begin analysis'))

    except Exception as e:
        logger.error(f"Error general: {str(e)}")
        st.error("Error in semantic interface. Please try again.")
        

def display_semantic_results(result, lang_code, semantic_t):
    """
    Muestra los resultados del análisis semántico
    """
    if result is None or not result['success']:
        st.warning(semantic_t.get('no_results', 'No results available'))
        return

    analysis = result['analysis']
    
    # Crear tabs para los resultados
    tab1, tab2 = st.tabs([
        semantic_t.get('concepts_tab', 'Key Concepts Analysis'),
        semantic_t.get('entities_tab', 'Entities Analysis')
    ])
    
    # Tab 1: Conceptos Clave
    with tab1:
        col1, col2 = st.columns(2)
        
        # Columna 1: Lista de conceptos
        with col1:
            st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
            concept_text = "\n".join([
                f"• {concept} ({frequency:.2f})" 
                for concept, frequency in analysis['key_concepts']
            ])
            st.markdown(concept_text)
        
        # Columna 2: Gráfico de conceptos
        with col2:
            st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
            st.image(analysis['concept_graph'])
    
    # Tab 2: Entidades
    with tab2:
        col1, col2 = st.columns(2)
        
        # Columna 1: Lista de entidades
        with col1:
            st.subheader(semantic_t.get('identified_entities', 'Identified Entities'))
            if 'entities' in analysis:
                for entity_type, entities in analysis['entities'].items():
                    st.markdown(f"**{entity_type}**")
                    st.markdown("• " + "\n• ".join(entities))
        
        # Columna 2: Gráfico de entidades
        with col2:
            st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
            st.image(analysis['entity_graph'])