File size: 16,107 Bytes
c58df45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# modules/ui.py
# Importaciones estandar de python
import io
import streamlit as st
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import squarify
import pandas as pd
from datetime import datetime
import base64
from spacy import displacy
import re
from .morpho_analysis import POS_COLORS, POS_TRANSLATIONS # Asegúrate de que esta importación esté presente
print("POS_COLORS:", POS_COLORS)
print("POS_TRANSLATIONS:", POS_TRANSLATIONS)
# Importaciones locales
from .auth import authenticate_user, register_user, get_user_role
from .database import get_student_data, store_analysis_result
from .morpho_analysis import get_repeated_words_colors, highlight_repeated_words, POS_COLORS, POS_TRANSLATIONS
from .syntax_analysis import visualize_syntax
#########################################################################
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', # Light Salmon
'ADP': '#98FB98', # Pale Green
'ADV': '#87CEFA', # Light Sky Blue
'AUX': '#DDA0DD', # Plum
'CCONJ': '#F0E68C', # Khaki
'DET': '#FFB6C1', # Light Pink
'INTJ': '#FF6347', # Tomato
'NOUN': '#90EE90', # Light Green
'NUM': '#FAFAD2', # Light Goldenrod Yellow
'PART': '#D3D3D3', # Light Gray
'PRON': '#FFA500', # Orange
'PROPN': '#20B2AA', # Light Sea Green
'SCONJ': '#DEB887', # Burlywood
'SYM': '#7B68EE', # Medium Slate Blue
'VERB': '#FF69B4', # Hot Pink
'X': '#A9A9A9', # Dark Gray
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo',
'ADP': 'Adposición',
'ADV': 'Adverbio',
'AUX': 'Auxiliar',
'CCONJ': 'Conjunción Coordinante',
'DET': 'Determinante',
'INTJ': 'Interjección',
'NOUN': 'Sustantivo',
'NUM': 'Número',
'PART': 'Partícula',
'PRON': 'Pronombre',
'PROPN': 'Nombre Propio',
'SCONJ': 'Conjunción Subordinante',
'SYM': 'Símbolo',
'VERB': 'Verbo',
'X': 'Otro',
},
'en': {
'ADJ': 'Adjective',
'ADP': 'Adposition',
'ADV': 'Adverb',
'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction',
'DET': 'Determiner',
'INTJ': 'Interjection',
'NOUN': 'Noun',
'NUM': 'Number',
'PART': 'Particle',
'PRON': 'Pronoun',
'PROPN': 'Proper Noun',
'SCONJ': 'Subordinating Conjunction',
'SYM': 'Symbol',
'VERB': 'Verb',
'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif',
'ADP': 'Adposition',
'ADV': 'Adverbe',
'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination',
'DET': 'Déterminant',
'INTJ': 'Interjection',
'NOUN': 'Nom',
'NUM': 'Nombre',
'PART': 'Particule',
'PRON': 'Pronom',
'PROPN': 'Nom Propre',
'SCONJ': 'Conjonction de Subordination',
'SYM': 'Symbole',
'VERB': 'Verbe',
'X': 'Autre',
}
}
##########################################################################
def login_page():
st.title("Iniciar Sesión")
username = st.text_input("Usuario")
password = st.text_input("Contraseña", type='password')
if st.button("Iniciar Sesión"):
if authenticate_user(username, password):
st.success(f"Bienvenido, {username}!")
st.session_state.logged_in = True
st.session_state.username = username
st.session_state.role = get_user_role(username)
st.experimental_rerun()
else:
st.error("Usuario o contraseña incorrectos")
##########################################################################
def register_page():
st.title("Registrarse")
new_username = st.text_input("Nuevo Usuario")
new_password = st.text_input("Nueva Contraseña", type='password')
additional_info = {}
additional_info['carrera'] = st.text_input("Carrera")
if st.button("Registrarse"):
if register_user(new_username, new_password, additional_info):
st.success("Registro exitoso. Por favor, inicia sesión.")
else:
st.error("El usuario ya existe o ocurrió un error durante el registro")
##########################################################################
def get_chatbot_response(input_text):
# Esta función debe ser implementada o importada de otro módulo
# Por ahora, retornamos un mensaje genérico
return "Lo siento, el chatbot no está disponible en este momento."
##########################################################################
def display_chat_interface():
st.markdown("### Chat con AIdeaText")
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
for i, (role, text) in enumerate(st.session_state.chat_history):
if role == "user":
st.text_area(f"Tú:", value=text, height=50, key=f"user_message_{i}", disabled=True)
else:
st.text_area(f"AIdeaText:", value=text, height=50, key=f"bot_message_{i}", disabled=True)
user_input = st.text_input("Escribe tu mensaje aquí:")
if st.button("Enviar"):
if user_input:
st.session_state.chat_history.append(("user", user_input))
response = get_chatbot_response(user_input)
st.session_state.chat_history.append(("bot", response))
st.experimental_rerun()
##########################################################################
def display_student_progress(username, lang_code='es'):
print("lang_code:", lang_code)
student_data = get_student_data(username)
if student_data is None:
st.warning("No se encontraron datos para este estudiante.")
st.info("Intenta realizar algunos análisis de texto primero.")
return
st.title(f"Progreso de {username}")
if student_data['entries_count'] > 0:
if 'word_count' in student_data and student_data['word_count']:
st.subheader("Total de palabras por categoría gramatical")
df = pd.DataFrame(list(student_data['word_count'].items()), columns=['category', 'count'])
df['label'] = df.apply(lambda x: f"{POS_TRANSLATIONS[lang_code].get(x['category'], x['category'])}", axis=1)
# Ordenar el DataFrame por conteo de palabras, de mayor a menor
df = df.sort_values('count', ascending=False)
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.bar(df['label'], df['count'], color=[POS_COLORS.get(cat, '#CCCCCC') for cat in df['category']])
ax.set_xlabel('Categoría Gramatical')
ax.set_ylabel('Cantidad de Palabras')
ax.set_title('Total de palabras por categoría gramatical')
plt.xticks(rotation=45, ha='right')
# Añadir etiquetas de valor en las barras
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height,
f'{height}',
ha='center', va='bottom')
plt.tight_layout()
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
st.image(buf, use_column_width=True)
else:
st.info("No hay datos de conteo de palabras disponibles.")
# Diagramas de Arco (consolidados)
st.header("Diagramas de Arco")
with st.expander("Ver todos los Diagramas de Arco"):
for i, entry in enumerate(student_data['entries']):
if 'arc_diagrams' in entry and entry['arc_diagrams']:
st.subheader(f"Entrada {i+1} - {entry['timestamp']}")
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
# Diagramas de Red (consolidados)
st.header("Diagramas de Red")
with st.expander("Ver todos los Diagramas de Red"):
for i, entry in enumerate(student_data['entries']):
if 'network_diagram' in entry and entry['network_diagram']:
st.subheader(f"Entrada {i+1} - {entry['timestamp']}")
try:
# Decodificar la imagen base64
image_bytes = base64.b64decode(entry['network_diagram'])
st.image(image_bytes)
except Exception as e:
st.error(f"Error al mostrar el diagrama de red: {str(e)}")
else:
st.warning("No se encontraron entradas para este estudiante.")
st.info("Intenta realizar algunos análisis de texto primero.")
##############################################################Mostrar entradas recientes######################################################################
#st.header("Entradas Recientes")
#for i, entry in enumerate(student_data['entries'][:5]): # Mostrar las 5 entradas más recientes
#with st.expander(f"Entrada {i+1} - {entry['timestamp']}"):
#st.write(entry['text'])
#else:
#st.warning("No se encontraron entradas para este estudiante.")
#st.info("Intenta realizar algunos análisis de texto primero.")
##########################################################################
def display_text_analysis_interface(nlp_models, lang_code):
translations = {
'es': {
'title': "AIdeaText - Análisis morfológico y sintáctico",
'input_label': "Ingrese un texto para analizar (máx. 5,000 palabras):",
'input_placeholder': "El objetivo de esta aplicación es que mejore sus habilidades de redacción. Para ello, después de ingresar su texto y presionar el botón obtendrá tres vistas horizontales. La primera, le indicará las palabras que se repiten por categoría gramátical; la segunda, un diagrama de arco le indicara las conexiones sintácticas en cada oración; y la tercera, es un grafo en el cual visualizara la configuración de su texto.",
'analyze_button': "Analizar texto",
'repeated_words': "Palabras repetidas",
'legend': "Leyenda: Categorías gramaticales",
'arc_diagram': "Análisis sintáctico: Diagrama de arco",
'network_diagram': "Análisis sintáctico: Diagrama de red",
'sentence': "Oración"
},
'en': {
'title': "AIdeaText - Morphological and Syntactic Analysis",
'input_label': "Enter a text to analyze (max 5,000 words):",
'input_placeholder': "The goal of this app is for you to improve your writing skills. To do this, after entering your text and pressing the button you will get three horizontal views. The first will indicate the words that are repeated by grammatical category; second, an arc diagram will indicate the syntactic connections in each sentence; and the third is a graph in which you will visualize the configuration of your text.",
'analyze_button': "Analyze text",
'repeated_words': "Repeated words",
'legend': "Legend: Grammatical categories",
'arc_diagram': "Syntactic analysis: Arc diagram",
'network_diagram': "Syntactic analysis: Network diagram",
'sentence': "Sentence"
},
'fr': {
'title': "AIdeaText - Analyse morphologique et syntaxique",
'input_label': "Entrez un texte à analyser (max 5 000 mots) :",
'input_placeholder': "Le but de cette application est d'améliorer vos compétences en rédaction. Pour ce faire, après avoir saisi votre texte et appuyé sur le bouton vous obtiendrez trois vues horizontales. Le premier indiquera les mots répétés par catégorie grammaticale; deuxièmement, un diagramme en arcs indiquera les connexions syntaxiques dans chaque phrase; et le troisième est un graphique dans lequel vous visualiserez la configuration de votre texte.",
'analyze_button': "Analyser le texte",
'repeated_words': "Mots répétés",
'legend': "Légende : Catégories grammaticales",
'arc_diagram': "Analyse syntaxique : Diagramme en arc",
'network_diagram': "Analyse syntaxique : Diagramme de réseau",
'sentence': "Phrase"
}
}
t = translations[lang_code]
if 'input_text' not in st.session_state:
st.session_state.input_text = ""
# Añadimos una clave única basada en el idioma seleccionado
sentence_input = st.text_area(
t['input_label'],
height=150,
placeholder=t['input_placeholder'],
value=st.session_state.input_text,
key=f"text_input_{lang_code}" # Clave única basada en el idioma
)
st.session_state.input_text = sentence_input
# sentence_input = st.text_area(t['input_label'], height=150, placeholder=t['input_placeholder'], value=st.session_state.input_text)
# st.session_state.input_text = sentence_input
if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"):
if sentence_input:
doc = nlp_models[lang_code](sentence_input)
with st.expander(t['repeated_words'], expanded=True):
word_colors = get_repeated_words_colors(doc)
highlighted_text = highlight_repeated_words(doc, word_colors)
st.markdown(highlighted_text, unsafe_allow_html=True)
st.markdown(f"##### {t['legend']}")
legend_html = "<div style='display: flex; flex-wrap: wrap;'>"
for pos, color in POS_COLORS.items():
if pos in POS_TRANSLATIONS:
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[pos]}</span></div>"
legend_html += "</div>"
st.markdown(legend_html, unsafe_allow_html=True)
with st.expander(t['arc_diagram'], expanded=True):
sentences = list(doc.sents)
arc_diagrams = []
for i, sent in enumerate(sentences):
st.subheader(f"{t['sentence']} {i+1}")
html = displacy.render(sent, style="dep", options={"distance": 100})
html = html.replace('height="375"', 'height="200"')
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
st.write(html, unsafe_allow_html=True)
arc_diagrams.append(html)
with st.expander(t['network_diagram'], expanded=True):
fig = visualize_syntax(sentence_input, nlp_models[lang_code], lang_code)
st.pyplot(fig)
if store_analysis_result(
st.session_state.username,
sentence_input,
word_colors,
arc_diagrams,
fig
):
st.success("Análisis guardado correctamente.")
else:
st.error("Hubo un problema al guardar el análisis. Por favor, inténtelo de nuevo.")
st.error(f"Falló el guardado del análisis. Username: {st.session_state.username}")
##########################################################################
def display_teacher_interface():
st.write("Bienvenido, profesor. Aquí podrás ver el progreso de tus estudiantes.")
# Aquí puedes agregar la lógica para mostrar el progreso de los estudiantes |