File size: 6,125 Bytes
d07932c
64f3506
a8643a1
 
64f3506
 
 
 
 
d5968bb
 
 
 
 
 
 
 
 
64f3506
5778534
 
 
64f3506
6d577d6
5778534
6d577d6
5778534
 
858fd40
 
 
 
 
 
 
 
 
 
 
 
b94c8a0
858fd40
b94c8a0
858fd40
b94c8a0
858fd40
b94c8a0
858fd40
b94c8a0
858fd40
b94c8a0
d07932c
5778534
 
 
6d577d6
 
 
d07932c
 
858fd40
 
 
5778534
d07932c
 
5778534
858fd40
 
 
3022cb9
858fd40
 
3022cb9
5778534
6d577d6
5778534
 
858fd40
 
97ad90b
28f3afb
5778534
d07932c
5778534
d07932c
97ad90b
f534eef
97ad90b
7d3bc93
f534eef
 
97ad90b
d07932c
 
 
 
f534eef
97ad90b
f534eef
 
 
 
 
 
97ad90b
 
 
 
 
 
 
 
 
 
7d3bc93
97ad90b
 
 
f534eef
d07932c
f534eef
d07932c
97ad90b
7d3bc93
d07932c
5778534
d07932c
5778534
d07932c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5778534
64f3506
d07932c
5778534
d07932c
5778534
d07932c
 
 
 
 
 
 
5778534
64f3506
d07932c
5778534
d07932c
5778534
d07932c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# modules/database/discourse_mongo_db.py
# Importaciones estándar
import io
import base64
from datetime import datetime, timezone
import logging

# Importaciones de terceros
import matplotlib.pyplot as plt

from .mongo_db import (
    get_collection,
    insert_document, 
    find_documents, 
    update_document, 
    delete_document
)

# Configuración del logger
logger = logging.getLogger(__name__)
COLLECTION_NAME = 'student_discourse_analysis'

########################################################################
def store_student_discourse_result(username, text1, text2, analysis_result):
    """
    Guarda el resultado del análisis de discurso comparativo en MongoDB.
    """
    try:
        # Los gráficos ya vienen en bytes, solo necesitamos codificar a base64
        graph1_data = None
        graph2_data = None
        combined_graph_data = None

        if 'graph1' in analysis_result and analysis_result['graph1'] is not None:
            try:
                graph1_data = base64.b64encode(analysis_result['graph1']).decode('utf-8')
            except Exception as e:
                logger.error(f"Error al codificar gráfico 1: {str(e)}")

        if 'graph2' in analysis_result and analysis_result['graph2'] is not None:
            try:
                graph2_data = base64.b64encode(analysis_result['graph2']).decode('utf-8')
            except Exception as e:
                logger.error(f"Error al codificar gráfico 2: {str(e)}")

        if 'combined_graph' in analysis_result and analysis_result['combined_graph'] is not None:
            try:
                combined_graph_data = base64.b64encode(analysis_result['combined_graph']).decode('utf-8')
            except Exception as e:
                logger.error(f"Error al codificar gráfico combinado: {str(e)}")

        # Crear documento para MongoDB
        analysis_document = {
            'username': username,
            'timestamp': datetime.now(timezone.utc).isoformat(),
            'text1': text1,
            'text2': text2,
            'analysis_type': 'discourse',
            'key_concepts1': analysis_result.get('key_concepts1', []),
            'key_concepts2': analysis_result.get('key_concepts2', []),
            'graph1': graph1_data,
            'graph2': graph2_data,
            'combined_graph': combined_graph_data
        }

        # Insertar en MongoDB
        result = insert_document(COLLECTION_NAME, analysis_document)
        if result:
            logger.info(f"Análisis del discurso guardado con ID: {result} para el usuario: {username}")
            return True

        logger.error("No se pudo insertar el documento en MongoDB")
        return False

    except Exception as e:
        logger.error(f"Error al guardar el análisis del discurso: {str(e)}")
        return False



#################################################################################
def get_student_discourse_analysis(username, limit=10):
    """
    Recupera los análisis del discurso de un estudiante.
    """
    try:
        # Obtener la colección
        collection = get_collection(COLLECTION_NAME)
        if collection is None:  # Cambiado de if not collection a if collection is None
            logger.error("No se pudo obtener la colección discourse")
            return []

        # Consulta
        query = {
            "username": username,
            "analysis_type": "discourse"
        }
        
        # Campos a recuperar
        projection = {
            "timestamp": 1,
            "combined_graph": 1,
            "_id": 1
        }
        
        # Ejecutar consulta
        try:
            cursor = collection.find(query, projection).sort("timestamp", -1)
            if limit:
                cursor = cursor.limit(limit)
            
            # Convertir cursor a lista
            results = list(cursor)
            logger.info(f"Recuperados {len(results)} análisis del discurso para {username}")
            return results
            
        except Exception as db_error:
            logger.error(f"Error en la consulta a MongoDB: {str(db_error)}")
            return []
        
    except Exception as e:
        logger.error(f"Error recuperando análisis del discurso: {str(e)}")
        return []
#####################################################################################
        
def get_student_discourse_data(username):
    """
    Obtiene un resumen de los análisis del discurso de un estudiante.
    """
    try:
        analyses = get_student_discourse_analysis(username, limit=None)
        formatted_analyses = []
        
        for analysis in analyses:
            formatted_analysis = {
                'timestamp': analysis['timestamp'],
                'text1': analysis.get('text1', ''),
                'text2': analysis.get('text2', ''),
                'key_concepts1': analysis.get('key_concepts1', []),
                'key_concepts2': analysis.get('key_concepts2', [])
            }
            formatted_analyses.append(formatted_analysis)
            
        return {'entries': formatted_analyses}
        
    except Exception as e:
        logger.error(f"Error al obtener datos del discurso: {str(e)}")
        return {'entries': []}

###########################################################################
def update_student_discourse_analysis(analysis_id, update_data):
    """
    Actualiza un análisis del discurso existente.
    """
    try:
        query = {"_id": analysis_id}
        update = {"$set": update_data}
        return update_document(COLLECTION_NAME, query, update)
    except Exception as e:
        logger.error(f"Error al actualizar análisis del discurso: {str(e)}")
        return False

###########################################################################
def delete_student_discourse_analysis(analysis_id):
    """
    Elimina un análisis del discurso.
    """
    try:
        query = {"_id": analysis_id}
        return delete_document(COLLECTION_NAME, query)
    except Exception as e:
        logger.error(f"Error al eliminar análisis del discurso: {str(e)}")
        return False