File size: 8,856 Bytes
c58df45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import streamlit as st
from streamlit_float import *
import logging
from .semantic_process import process_semantic_analysis
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
from ..utils.widget_utils import generate_unique_key

logger = logging.getLogger(__name__)

def get_translation(t, key, default):
    return t.get(key, default)

def display_semantic_interface(lang_code, nlp_models, t):
    # Inicializar el chatbot y el historial del chat al principio de la función
    if 'semantic_chatbot' not in st.session_state:
        st.session_state.semantic_chatbot = initialize_chatbot('semantic')

    if 'semantic_chat_history' not in st.session_state:
        st.session_state.semantic_chat_history = []

    st.markdown("""

        <style>

        .stTabs [data-baseweb="tab-list"] {

            gap: 24px;

        }

        .stTabs [data-baseweb="tab"] {

            height: 50px;

            white-space: pre-wrap;

            background-color: #F0F2F6;

            border-radius: 4px 4px 0px 0px;

            gap: 1px;

            padding-top: 10px;

            padding-bottom: 10px;

        }

        .stTabs [aria-selected="true"] {

            background-color: #FFFFFF;

        }

        .file-list {

            border: 1px solid #ddd;

            border-radius: 5px;

            padding: 10px;

            margin-top: 20px;

        }

        .file-item {

            display: flex;

            justify-content: space-between;

            align-items: center;

            padding: 5px 0;

            border-bottom: 1px solid #eee;

        }

        .file-item:last-child {

            border-bottom: none;

        }

        .chat-message-container {

            height: 400px;

            overflow-y: auto;

            border: 1px solid #ddd;

            border-radius: 5px;

            padding: 10px;

            margin-bottom: 10px;

        }

        .stButton {

            margin-top: 0 !important;

        }

        .graph-container {

            border: 1px solid #ddd;

            border-radius: 5px;

            padding: 10px;

        }

        .semantic-initial-message {

            background-color: #f0f2f6;

            border-left: 5px solid #4CAF50;

            padding: 10px;

            border-radius: 5px;

            font-size: 16px;

            margin-bottom: 20px;

        }

        </style>

    """, unsafe_allow_html=True)

    # Sidebar for chat
    with st.sidebar:
        st.subheader("Chat with AI")

        messages = st.container(height=400)

        # Display chat messages
        for message in st.session_state.semantic_chat_history:
            with messages.chat_message(message["role"]):
                st.markdown(message["content"])

        # Chat input
        if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')):
            st.session_state.semantic_chat_history.append({"role": "user", "content": prompt})

            with messages.chat_message("user"):
                st.markdown(prompt)

            with messages.chat_message("assistant"):
                message_placeholder = st.empty()
                full_response = ""

                if prompt.startswith('/analyze_current'):
                    assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
                else:
                    assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', ''))

                # Simulate stream of response with milliseconds delay
                for chunk in assistant_response.split():
                    full_response += chunk + " "
                    message_placeholder.markdown(full_response + "▌")
                message_placeholder.markdown(full_response)

            st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response})

        if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
            st.session_state.semantic_chat_history = []
            st.rerun()

    # Main content area
    st.title("Semantic Analysis")

    # Mostrar el mensaje inicial como un párrafo estilizado
    st.markdown(f"""

        <div class="semantic-initial-message">

        {t['semantic_initial_message']}

        </div>

    """, unsafe_allow_html=True)

    tab1, tab2 = st.tabs(["Upload", "Analyze"])

    with tab1:
        st.subheader("File Management")
        uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
        if uploaded_file is not None:
            file_contents = uploaded_file.getvalue().decode('utf-8')
            if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
                st.success(f"File {uploaded_file.name} uploaded and saved successfully")
            else:
                st.error("Error uploading file")

        st.markdown("---")  # Línea separadora

        st.subheader("Manage Uploaded Files")
        user_files = get_user_files(st.session_state.username, 'semantic')
        if user_files:
            for file in user_files:
                col1, col2 = st.columns([3, 1])
                with col1:
                    st.write(file['file_name'])
                with col2:
                    if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
                        if delete_file(st.session_state.username, file['file_name'], 'semantic'):
                            st.success(f"File {file['file_name']} deleted successfully")
                            st.rerun()
                        else:
                            st.error(f"Error deleting file {file['file_name']}")
        else:
            st.info("No files uploaded yet.")

    with tab2:
        st.subheader("Select File for Analysis")
        user_files = get_user_files(st.session_state.username, 'semantic')
        file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
        selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))

        if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
            if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
                file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
                if file_contents:
                    st.session_state.file_contents = file_contents
                    with st.spinner("Analyzing..."):
                        try:
                            nlp_model = nlp_models[lang_code]
                            concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
                            st.session_state.concept_graph = concept_graph
                            st.session_state.entity_graph = entity_graph
                            st.session_state.key_concepts = key_concepts
                            st.success("Analysis completed successfully")
                        except Exception as e:
                            logger.error(f"Error during analysis: {str(e)}")
                            st.error(f"Error during analysis: {str(e)}")
                else:
                    st.error("Error loading file contents")
            else:
                st.error("Please select a file to analyze")

        # Visualization
        st.subheader("Visualization")
        if 'key_concepts' in st.session_state:
            st.write("Key Concepts:")
            st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))

        tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])

        with tab_concept:
            if 'concept_graph' in st.session_state:
                st.pyplot(st.session_state.concept_graph)
            else:
                st.info("No concept graph available. Please analyze a document first.")

        with tab_entity:
            if 'entity_graph' in st.session_state:
                st.pyplot(st.session_state.entity_graph)
            else:
                st.info("No entity graph available. Please analyze a document first.")