File size: 10,085 Bytes
c58df45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
import logging
from .semantic_process import process_semantic_analysis
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
from ..utils.widget_utils import generate_unique_key
from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content

logger = logging.getLogger(__name__)
semantic_float_init()

def get_translation(t, key, default):
    return t.get(key, default)

def display_semantic_interface(lang_code, nlp_models, t):
    # Inicialización del chatbot y el historial del chat
    if 'semantic_chatbot' not in st.session_state:
        st.session_state.semantic_chatbot = initialize_chatbot('semantic')
    if 'semantic_chat_history' not in st.session_state:
        st.session_state.semantic_chat_history = []

    st.markdown("""

        <style>

        .stTabs [data-baseweb="tab-list"] { gap: 24px; }

        .stTabs [data-baseweb="tab"] {

            height: 50px;

            white-space: pre-wrap;

            background-color: #F0F2F6;

            border-radius: 4px 4px 0px 0px;

            gap: 1px;

            padding-top: 10px;

            padding-bottom: 10px;

        }

        .stTabs [aria-selected="true"] { background-color: #FFFFFF; }

        .file-list {

            border: 1px solid #ddd;

            border-radius: 5px;

            padding: 10px;

            margin-top: 20px;

        }

        .file-item {

            display: flex;

            justify-content: space-between;

            align-items: center;

            padding: 5px 0;

            border-bottom: 1px solid #eee;

        }

        .file-item:last-child { border-bottom: none; }

        .chat-messages {

            height: 400px;

            overflow-y: auto;

            border: 1px solid #ddd;

            padding: 10px;

            margin-bottom: 10px;

        }

        .chat-input { border-top: 1px solid #ddd; padding-top: 10px; }

        .stButton { margin-top: 0 !important; }

        .graph-container {

            border: 1px solid #ddd;

            border-radius: 5px;

            padding: 10px;

            height: 500px;

            overflow-y: auto;

        }

        </style>

    """, unsafe_allow_html=True)

    st.markdown(f"<div class='semantic-initial-message'>{t['semantic_initial_message']}</div>", unsafe_allow_html=True)

    tab1, tab2 = st.tabs(["Upload", "Analyze"])

    with tab1:
        st.subheader("File Management")
        uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
        if uploaded_file is not None:
            file_contents = uploaded_file.getvalue().decode('utf-8')
            if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
                st.success(f"File {uploaded_file.name} uploaded and saved successfully")
            else:
                st.error("Error uploading file")

        st.markdown("---")
        st.subheader("Manage Uploaded Files")
        user_files = get_user_files(st.session_state.username, 'semantic')
        if user_files:
            for file in user_files:
                col1, col2 = st.columns([3, 1])
                with col1:
                    st.write(file['file_name'])
                with col2:
                    if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
                        if delete_file(st.session_state.username, file['file_name'], 'semantic'):
                            st.success(f"File {file['file_name']} deleted successfully")
                            st.rerun()
                        else:
                            st.error(f"Error deleting file {file['file_name']}")
        else:
            st.info("No files uploaded yet.")

    with tab2:
        st.subheader("Semantic Analysis")
        col_left, col_right = st.columns([1, 1])

        with col_left:
            st.subheader("File Selection and Analysis")
            user_files = get_user_files(st.session_state.username, 'semantic')
            file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
            selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))

            if st.button("Analyze Document"):
                if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
                    file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
                    if file_contents:
                        with st.spinner("Analyzing..."):
                            try:
                                nlp_model = nlp_models[lang_code]
                                concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
                                st.session_state.concept_graph = concept_graph
                                st.session_state.entity_graph = entity_graph
                                st.session_state.key_concepts = key_concepts
                                st.success("Analysis completed successfully")

                                if 'graph_id' not in st.session_state:
                                    st.session_state.graph_id = float_graph(
                                        content="<div id='semantic-graph'>Loading graph...</div>",
                                        width="40%",
                                        height="60%",
                                        position="bottom-right",
                                        shadow=2,
                                        transition=1
                                    )

                                update_float_content(st.session_state.graph_id, f"""

                                    <h3>Key Concepts:</h3>

                                    <p>{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}</p>

                                    <img src="data:image/png;base64,{concept_graph}" alt="Concept Graph" style="width:100%"/>

                                """)
                            except Exception as e:
                                logger.error(f"Error during analysis: {str(e)}")
                                st.error(f"Error during analysis: {str(e)}")
                                st.session_state.concept_graph = None
                                st.session_state.entity_graph = None
                                st.session_state.key_concepts = []
                    else:
                        st.error("Error loading file contents")
                else:
                    st.error("Please select a file to analyze")

            st.subheader("Chat with AI")
            chat_container = st.container()
            with chat_container:
                for message in st.session_state.semantic_chat_history:
                    with st.chat_message(message["role"]):
                        st.markdown(message["content"])

            user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
            col1, col2, col3 = st.columns([2, 1, 1])
            with col1:
                send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
            with col2:
                clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
            with col3:
                if 'graph_id' in st.session_state:
                    toggle_button = st.button("Toggle Graph", key="toggle_graph")
                    if toggle_button:
                        toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True))
                        st.session_state.graph_visible = not st.session_state.get('graph_visible', True)

            if send_button and user_input:
                st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
                if user_input.startswith('/analyze_current'):
                    response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
                else:
                    response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
                st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
                st.rerun()

            if clear_button:
                st.session_state.semantic_chat_history = []
                st.rerun()

        with col_right:
            st.subheader("Visualization")
            if 'key_concepts' in st.session_state:
                st.write("Key Concepts:")
                st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))

            tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
            with tab_concept:
                if 'concept_graph' in st.session_state and st.session_state.concept_graph:
                    st.image(st.session_state.concept_graph)
                else:
                    st.info("No concept graph available. Please analyze a document first.")
            with tab_entity:
                if 'entity_graph' in st.session_state and st.session_state.entity_graph:
                    st.image(st.session_state.entity_graph)
                else:
                    st.info("No entity graph available. Please analyze a document first.")