File size: 7,051 Bytes
c58df45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import streamlit as st
import logging
from .semantic_process import process_semantic_analysis
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
from ..utils.widget_utils import generate_unique_key
logger = logging.getLogger(__name__)
def get_translation(t, key, default):
return t.get(key, default)
def display_semantic_interface(lang_code, nlp_models, t):
# Inicializar el chatbot al principio de la función
if 'semantic_chatbot' not in st.session_state:
st.session_state.semantic_chatbot = initialize_chatbot('semantic')
st.markdown("""
<style>
.semantic-initial-message {
background-color: #f0f2f6;
border-left: 5px solid #4CAF50;
padding: 10px;
border-radius: 5px;
font-size: 16px;
margin-bottom: 20px;
}
.stButton > button {
width: 100%;
height: 3em;
}
.chat-container {
height: 400px;
overflow-y: auto;
border: 1px solid #ddd;
padding: 10px;
border-radius: 5px;
}
.file-management-container {
position: sticky;
top: 0;
z-index: 999;
background-color: white;
padding: 10px;
border-bottom: 1px solid #ddd;
display: flex;
justify-content: space-between;
align-items: flex-start;
margin-bottom: 20px;
}
.file-management-item {
flex: 1;
margin: 0 5px;
}
.stButton > button {
width: 100%;
height: 3em;
}
.stSelectbox {
margin-top: -5px;
}
</style>
""", unsafe_allow_html=True)
st.markdown(f"""
<div class="semantic-initial-message">
{get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
</div>
""", unsafe_allow_html=True)
# File management container
st.markdown('<div class="file-management-container">', unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
if st.button("Upload File", key=generate_unique_key('semantic', 'upload_button')):
st.session_state.show_uploader = True
with col2:
user_files = get_user_files(st.session_state.username, 'semantic')
file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
with col3:
analyze_button = st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document'))
with col4:
delete_button = st.button("Delete File", key=generate_unique_key('semantic', 'delete_file'))
st.markdown('</div>', unsafe_allow_html=True)
# File uploader (hidden by default)
if st.session_state.get('show_uploader', False):
uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
if uploaded_file is not None:
file_contents = uploaded_file.getvalue().decode('utf-8')
if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
st.session_state.file_contents = file_contents
st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully'))
st.session_state.show_uploader = False # Hide uploader after successful upload
else:
st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
# Contenedor para la sección de análisis
st.markdown('<div class="analysis-container">', unsafe_allow_html=True)
col_chat, col_graph = st.columns([1, 1])
with col_chat:
st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
chat_container = st.container()
with chat_container:
chat_history = st.session_state.get('semantic_chat_history', [])
for message in chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
if user_input:
chat_history.append({"role": "user", "content": user_input})
if user_input.startswith('/analyze_current'):
response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
else:
response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
chat_history.append({"role": "assistant", "content": response})
st.session_state.semantic_chat_history = chat_history
with col_graph:
st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs'))
# Mostrar conceptos clave y entidades horizontalmente
if 'key_concepts' in st.session_state:
st.write(get_translation(t, 'key_concepts_title', 'Key Concepts'))
st.markdown('<div class="horizontal-list">', unsafe_allow_html=True)
for concept, freq in st.session_state.key_concepts:
st.markdown(f'<span style="margin-right: 10px;">{concept}: {freq:.2f}</span>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
if 'entities' in st.session_state:
st.write(get_translation(t, 'entities_title', 'Entities'))
st.markdown('<div class="horizontal-list">', unsafe_allow_html=True)
for entity, type in st.session_state.entities.items():
st.markdown(f'<span style="margin-right: 10px;">{entity}: {type}</span>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Usar pestañas para mostrar los gráficos
tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"])
with tab1:
if 'concept_graph' in st.session_state:
st.pyplot(st.session_state.concept_graph)
with tab2:
if 'entity_graph' in st.session_state:
st.pyplot(st.session_state.entity_graph)
st.markdown('</div>', unsafe_allow_html=True)
if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
st.session_state.semantic_chat_history = []
st.rerun() |