File size: 8,656 Bytes
58e05a7 e3aeb2b 58e05a7 e3aeb2b 58e05a7 e3aeb2b 58e05a7 e3aeb2b 58e05a7 e3aeb2b 58e05a7 e3aeb2b a1db38f e3aeb2b a1db38f e3aeb2b a1db38f e3aeb2b 58e05a7 e3aeb2b f2cefa7 e3aeb2b 58e05a7 f2cefa7 58e05a7 f2cefa7 58e05a7 f2cefa7 58e05a7 f2cefa7 58e05a7 f2cefa7 58e05a7 f2cefa7 58e05a7 f2cefa7 58e05a7 f2cefa7 58e05a7 f2cefa7 58e05a7 f2cefa7 58e05a7 f2cefa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# modules/studentact/current_situation_interface.py
import streamlit as st
import logging
from ..utils.widget_utils import generate_unique_key
import matplotlib.pyplot as plt
import numpy as np
from ..database.current_situation_mongo_db import store_current_situation_result
from .current_situation_analysis import (
analyze_text_dimensions,
analyze_clarity,
analyze_reference_clarity,
analyze_vocabulary_diversity,
analyze_cohesion,
analyze_structure,
get_dependency_depths,
normalize_score,
generate_sentence_graphs,
generate_word_connections,
generate_connection_paths,
create_vocabulary_network,
create_syntax_complexity_graph,
create_cohesion_heatmap,
)
# Configuración del estilo de matplotlib para el gráfico de radar
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['axes.grid'] = True
plt.rcParams['axes.spines.top'] = False
plt.rcParams['axes.spines.right'] = False
logger = logging.getLogger(__name__)
####################################
def display_current_situation_interface(lang_code, nlp_models, t):
"""
Interfaz simplificada con gráfico de radar para visualizar métricas.
"""
try:
# Inicializar estados si no existen
if 'text_input' not in st.session_state:
st.session_state.text_input = ""
if 'show_results' not in st.session_state:
st.session_state.show_results = False
if 'current_doc' not in st.session_state:
st.session_state.current_doc = None
if 'current_metrics' not in st.session_state:
st.session_state.current_metrics = None
st.markdown("## Análisis Inicial de Escritura")
# Container principal con dos columnas
with st.container():
input_col, results_col = st.columns([1,2])
with input_col:
# Text area con manejo de estado
text_input = st.text_area(
t.get('input_prompt', "Escribe o pega tu texto aquí:"),
height=400,
key="text_area",
value=st.session_state.text_input,
on_change=lambda: on_text_change(),
help="Este texto será analizado para darte recomendaciones personalizadas"
)
if st.button(
t.get('analyze_button', "Analizar mi escritura"),
type="primary",
disabled=not text_input.strip(),
use_container_width=True,
):
try:
with st.spinner(t.get('processing', "Analizando...")):
doc = nlp_models[lang_code](text_input)
metrics = analyze_text_dimensions(doc)
# Guardar en MongoDB
storage_success = store_current_situation_result(
username=st.session_state.username,
text=text_input,
metrics=metrics,
feedback=None
)
if not storage_success:
logger.warning("No se pudo guardar el análisis en la base de datos")
st.session_state.current_doc = doc
st.session_state.current_metrics = metrics
st.session_state.show_results = True
st.session_state.text_input = text_input
except Exception as e:
logger.error(f"Error en análisis: {str(e)}")
st.error(t.get('analysis_error', "Error al analizar el texto"))
# Mostrar resultados en la columna derecha
with results_col:
if st.session_state.show_results and st.session_state.current_metrics is not None:
display_metrics_and_chart(st.session_state.current_metrics)
except Exception as e:
logger.error(f"Error en interfaz: {str(e)}")
st.error("Ocurrió un error. Por favor, intente de nuevo.")
def display_metrics_and_chart(metrics):
"""
Muestra las métricas y el gráfico de radar de manera organizada.
"""
try:
with st.container():
# Crear una fila de métricas con bordes y alineación uniforme
metric_cols = st.columns(4, gap="small", vertical_alignment="center", border=True)
# Vocabulario
metric_cols[0].metric(
"Vocabulario",
f"{metrics['vocabulary']['normalized_score']:.2f}",
"Meta: 1.00",
delta_color="off",
help="Riqueza y variedad del vocabulario utilizado"
)
# Estructura
metric_cols[1].metric(
"Estructura",
f"{metrics['structure']['normalized_score']:.2f}",
"Meta: 1.00",
delta_color="off",
help="Organización y complejidad de las oraciones"
)
# Cohesión
metric_cols[2].metric(
"Cohesión",
f"{metrics['cohesion']['normalized_score']:.2f}",
"Meta: 1.00",
delta_color="off",
help="Conexión y fluidez entre ideas"
)
# Claridad
metric_cols[3].metric(
"Claridad",
f"{metrics['clarity']['normalized_score']:.2f}",
"Meta: 1.00",
delta_color="off",
help="Facilidad de comprensión del texto"
)
# Espacio para separar métricas del gráfico
st.markdown("<div style='margin-top: 1rem;'></div>", unsafe_allow_html=True)
# Contenedor para el gráfico radar centrado
with st.container():
# Usar columnas para centrar el gráfico
left_space, graph_col, right_space = st.columns([1, 2, 1])
with graph_col:
display_radar_chart(metrics)
except Exception as e:
logger.error(f"Error mostrando métricas y gráfico: {str(e)}")
st.error("Error al mostrar los resultados")
########################################
def display_radar_chart(metrics):
"""
Muestra solo el gráfico de radar.
"""
try:
# Preparar datos para el gráfico
categories = ['Vocabulario', 'Estructura', 'Cohesión', 'Claridad']
values_user = [
metrics['vocabulary']['normalized_score'],
metrics['structure']['normalized_score'],
metrics['cohesion']['normalized_score'],
metrics['clarity']['normalized_score']
]
values_pattern = [1.0, 1.0, 1.0, 1.0]
# Crear figura más compacta
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(111, projection='polar')
# Número de variables
num_vars = len(categories)
# Calcular ángulos
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)]
angles += angles[:1]
# Extender valores para cerrar polígonos
values_user += values_user[:1]
values_pattern += values_pattern[:1]
# Configurar ejes y etiquetas
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, fontsize=8)
# Círculos concéntricos y etiquetas
circle_ticks = np.arange(0, 1.1, 0.2) # Reducido a 5 niveles
ax.set_yticks(circle_ticks)
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8)
ax.set_ylim(0, 1)
# Dibujar patrón ideal
ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patrón', alpha=0.5)
ax.fill(angles, values_pattern, 'g', alpha=0.1)
# Dibujar valores del usuario
ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura')
ax.fill(angles, values_user, 'b', alpha=0.2)
# Leyenda
ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8)
# Ajustes finales
plt.tight_layout()
st.pyplot(fig)
plt.close()
except Exception as e:
logger.error(f"Error generando gráfico de radar: {str(e)}")
st.error("Error al generar la visualización")
|