File size: 5,478 Bytes
ee5caf5 5203a97 4f9d716 5203a97 a3841d8 5203a97 eaef4a9 a3841d8 eaef4a9 83d0100 5203a97 83d0100 5203a97 ee5caf5 5203a97 ee5caf5 5203a97 ee5caf5 5203a97 ee5caf5 5203a97 ee5caf5 5203a97 ee5caf5 5203a97 ee5caf5 5203a97 ee5caf5 5203a97 ee5caf5 5203a97 ee5caf5 5203a97 46c149e ee5caf5 46c149e ee5caf5 46c149e ee5caf5 46c149e ee5caf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# modules/text_analysis/discourse_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import logging
logger = logging.getLogger(__name__)
from .semantic_analysis import (
create_concept_graph,
visualize_concept_graph,
identify_key_concepts
)
from .stopwords import (
get_custom_stopwords,
process_text,
get_stopwords_for_spacy
)
#####################
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección',
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre',
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo',
'VERB': 'Verbo', 'X': 'Otro',
},
'en': {
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
'VERB': 'Verb', 'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection',
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
'VERB': 'Verbe', 'X': 'Autre',
}
}
ENTITY_LABELS = {
'es': {
"Personas": "lightblue",
"Lugares": "lightcoral",
"Inventos": "lightgreen",
"Fechas": "lightyellow",
"Conceptos": "lightpink"
},
'en': {
"People": "lightblue",
"Places": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
},
'fr': {
"Personnes": "lightblue",
"Lieux": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
}
}
#################
def compare_semantic_analysis(text1, text2, nlp, lang):
"""
Realiza el análisis semántico comparativo entre dos textos
Args:
text1: Primer texto a analizar
text2: Segundo texto a analizar
nlp: Modelo de spaCy cargado
lang: Código de idioma
Returns:
tuple: (fig1, fig2, key_concepts1, key_concepts2)
"""
try:
# Procesar los textos
doc1 = nlp(text1)
doc2 = nlp(text2)
# Identificar conceptos clave con parámetros específicos
key_concepts1 = identify_key_concepts(doc1, min_freq=2, min_length=3)
key_concepts2 = identify_key_concepts(doc2, min_freq=2, min_length=3)
# Crear y visualizar grafos
G1 = create_concept_graph(doc1, key_concepts1)
G2 = create_concept_graph(doc2, key_concepts2)
fig1 = visualize_concept_graph(G1, lang)
fig2 = visualize_concept_graph(G2, lang)
# Limpiar títulos
fig1.suptitle("")
fig2.suptitle("")
return fig1, fig2, key_concepts1, key_concepts2
except Exception as e:
logger.error(f"Error en compare_semantic_analysis: {str(e)}")
raise
def create_concept_table(key_concepts):
"""
Crea una tabla de conceptos clave con sus frecuencias
Args:
key_concepts: Lista de tuplas (concepto, frecuencia)
Returns:
pandas.DataFrame: Tabla formateada de conceptos
"""
try:
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
df['Frecuencia'] = df['Frecuencia'].round(2)
return df
except Exception as e:
logger.error(f"Error en create_concept_table: {str(e)}")
raise
def perform_discourse_analysis(text1, text2, nlp, lang):
"""
Realiza el análisis completo del discurso
Args:
text1: Primer texto a analizar
text2: Segundo texto a analizar
nlp: Modelo de spaCy cargado
lang: Código de idioma
Returns:
dict: Resultados del análisis
"""
try:
# Realizar análisis comparativo
fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis(
text1, text2, nlp, lang
)
# Crear tablas de resultados
table1 = create_concept_table(key_concepts1)
table2 = create_concept_table(key_concepts2)
return {
'graph1': fig1,
'graph2': fig2,
'key_concepts1': key_concepts1,
'key_concepts2': key_concepts2,
'table1': table1,
'table2': table2,
'success': True
}
except Exception as e:
logger.error(f"Error en perform_discourse_analysis: {str(e)}")
return {
'success': False,
'error': str(e)
} |