|
|
|
import streamlit as st |
|
from streamlit_float import * |
|
from streamlit_antd_components import * |
|
from streamlit.components.v1 import html |
|
import spacy_streamlit |
|
import io |
|
from io import BytesIO |
|
import base64 |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
import re |
|
import logging |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
from .semantic_process import ( |
|
process_semantic_input, |
|
format_semantic_results |
|
) |
|
|
|
from ..utils.widget_utils import generate_unique_key |
|
from ..database.semantic_mongo_db import store_student_semantic_result |
|
from ..database.semantic_export import export_user_interactions |
|
|
|
|
|
|
|
def display_semantic_interface(lang_code, nlp_models, semantic_t): |
|
""" |
|
Interfaz para el análisis semántico |
|
Args: |
|
lang_code: Código del idioma actual |
|
nlp_models: Modelos de spaCy cargados |
|
semantic_t: Diccionario de traducciones semánticas |
|
""" |
|
try: |
|
|
|
if 'semantic_analysis_counter' not in st.session_state: |
|
st.session_state.semantic_analysis_counter = 0 |
|
|
|
input_key = f"semantic_input_{lang_code}" |
|
if input_key not in st.session_state: |
|
st.session_state[input_key] = "" |
|
|
|
|
|
uploaded_file = st.file_uploader( |
|
semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'), |
|
type=['txt'], |
|
key=f"semantic_file_uploader_{st.session_state.semantic_analysis_counter}" |
|
) |
|
|
|
|
|
col1, col2, col3 = st.columns([2,1,2]) |
|
with col1: |
|
analyze_button = st.button( |
|
semantic_t.get('semantic_analyze_button', 'Analyze Semantic'), |
|
key=f"semantic_analyze_button_{st.session_state.semantic_analysis_counter}", |
|
use_container_width=True |
|
) |
|
|
|
|
|
if analyze_button: |
|
if uploaded_file is None: |
|
st.warning(semantic_t.get('warning_message', 'Please upload a file first')) |
|
return |
|
|
|
try: |
|
with st.spinner(semantic_t.get('processing', 'Processing...')): |
|
|
|
text_content = uploaded_file.getvalue().decode('utf-8') |
|
|
|
|
|
analysis_result = process_semantic_input( |
|
text_content, |
|
lang_code, |
|
nlp_models, |
|
semantic_t |
|
) |
|
|
|
if not analysis_result['success']: |
|
st.error(analysis_result['message']) |
|
return |
|
|
|
|
|
st.session_state.semantic_result = analysis_result |
|
|
|
|
|
st.session_state.semantic_analysis_counter += 1 |
|
|
|
|
|
if store_student_semantic_result( |
|
st.session_state.username, |
|
text_content, |
|
analysis_result['analysis'] |
|
): |
|
st.success(semantic_t.get('success_message', 'Analysis saved successfully')) |
|
|
|
|
|
display_semantic_results( |
|
st.session_state.semantic_result, |
|
lang_code, |
|
semantic_t |
|
) |
|
else: |
|
st.error(semantic_t.get('error_message', 'Error saving analysis')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error en análisis semántico: {str(e)}") |
|
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}')) |
|
|
|
|
|
elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None: |
|
display_semantic_results( |
|
st.session_state.semantic_result, |
|
lang_code, |
|
semantic_t |
|
) |
|
|
|
else: |
|
st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error general en interfaz semántica: {str(e)}") |
|
st.error("Se produjo un error. Por favor, intente de nuevo.") |
|
|
|
|
|
def display_semantic_results(semantic_result, lang_code, semantic_t): |
|
""" |
|
Muestra los resultados del análisis semántico en tabs |
|
Args: |
|
semantic_result: Diccionario con los resultados del análisis |
|
lang_code: Código del idioma actual |
|
semantic_t: Diccionario de traducciones semánticas |
|
""" |
|
|
|
if semantic_result is None or not semantic_result['success']: |
|
st.warning(semantic_t.get('no_results', 'No results available')) |
|
return |
|
|
|
|
|
analysis = semantic_result['analysis'] |
|
|
|
|
|
tab1, tab2 = st.tabs([ |
|
semantic_t.get('concepts_tab', 'Key Concepts Analysis'), |
|
semantic_t.get('entities_tab', 'Entities Analysis') |
|
]) |
|
|
|
|
|
with tab1: |
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) |
|
if 'key_concepts' in analysis: |
|
concept_text = "\n".join([ |
|
f"• {concept} ({frequency:.2f})" |
|
for concept, frequency in analysis['key_concepts'] |
|
]) |
|
st.markdown(concept_text) |
|
else: |
|
st.info(semantic_t.get('no_concepts', 'No key concepts found')) |
|
|
|
|
|
with col2: |
|
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) |
|
if 'concept_graph' in analysis: |
|
st.image(analysis['concept_graph']) |
|
else: |
|
st.info(semantic_t.get('no_graph', 'No concept graph available')) |
|
|
|
|
|
with tab2: |
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
st.subheader(semantic_t.get('identified_entities', 'Identified Entities')) |
|
if 'entities' in analysis: |
|
for entity_type, entities in analysis['entities'].items(): |
|
st.markdown(f"**{entity_type}**") |
|
st.markdown("• " + "\n• ".join(entities)) |
|
else: |
|
st.info(semantic_t.get('no_entities', 'No entities found')) |
|
|
|
|
|
with col2: |
|
st.subheader(semantic_t.get('entity_graph', 'Entities Graph')) |
|
if 'entity_graph' in analysis: |
|
st.image(analysis['entity_graph']) |
|
else: |
|
st.info(semantic_t.get('no_entity_graph', 'No entity graph available')) |
|
|
|
|
|
if 'semantic_analysis_counter' in st.session_state: |
|
col1, col2, col3 = st.columns([2,1,2]) |
|
with col2: |
|
if st.button( |
|
semantic_t.get('export_button', 'Export Analysis'), |
|
key=f"semantic_export_{st.session_state.semantic_analysis_counter}", |
|
use_container_width=True |
|
): |
|
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic') |
|
st.download_button( |
|
label=semantic_t.get('download_pdf', 'Download PDF'), |
|
data=pdf_buffer, |
|
file_name="semantic_analysis.pdf", |
|
mime="application/pdf", |
|
key=f"semantic_download_{st.session_state.semantic_analysis_counter}" |
|
) |