|
|
|
import streamlit as st
|
|
import re
|
|
import io
|
|
from io import BytesIO
|
|
import base64
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import numpy as np
|
|
import time
|
|
from datetime import datetime
|
|
from streamlit_player import st_player
|
|
from spacy import displacy
|
|
import logging
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
from ..email.email import send_email_notification
|
|
|
|
|
|
|
|
from ..auth.auth import (
|
|
authenticate_user,
|
|
register_user
|
|
)
|
|
|
|
|
|
from ..database.database_oldFromV2 import (
|
|
get_student_data,
|
|
store_application_request,
|
|
store_morphosyntax_result,
|
|
store_semantic_result,
|
|
store_discourse_analysis_result,
|
|
store_chat_history,
|
|
create_admin_user,
|
|
create_student_user,
|
|
store_user_feedback
|
|
)
|
|
|
|
|
|
|
|
from ..admin.admin_ui import admin_page
|
|
|
|
|
|
|
|
from ..text_analysis.morpho_analysis import (
|
|
generate_arc_diagram,
|
|
get_repeated_words_colors,
|
|
highlight_repeated_words,
|
|
POS_COLORS,
|
|
POS_TRANSLATIONS,
|
|
perform_advanced_morphosyntactic_analysis
|
|
)
|
|
|
|
|
|
from ..text_analysis.semantic_analysis import (
|
|
|
|
perform_semantic_analysis,
|
|
create_concept_graph,
|
|
visualize_concept_graph
|
|
)
|
|
|
|
|
|
from ..text_analysis.discourse_analysis import (
|
|
perform_discourse_analysis,
|
|
display_discourse_analysis_results
|
|
)
|
|
|
|
|
|
from ..chatbot.chatbot import (
|
|
initialize_chatbot,
|
|
get_chatbot_response
|
|
)
|
|
|
|
|
|
def initialize_session_state():
|
|
if 'initialized' not in st.session_state:
|
|
st.session_state.clear()
|
|
st.session_state.initialized = True
|
|
st.session_state.logged_in = False
|
|
st.session_state.page = 'login'
|
|
st.session_state.username = None
|
|
st.session_state.role = None
|
|
|
|
|
|
def main():
|
|
initialize_session_state()
|
|
|
|
print(f"Página actual: {st.session_state.page}")
|
|
print(f"Rol del usuario: {st.session_state.role}")
|
|
|
|
if st.session_state.page == 'login':
|
|
login_register_page()
|
|
elif st.session_state.page == 'admin':
|
|
print("Intentando mostrar página de admin")
|
|
admin_page()
|
|
elif st.session_state.page == 'user':
|
|
user_page()
|
|
else:
|
|
print(f"Página no reconocida: {st.session_state.page}")
|
|
|
|
print(f"Estado final de la sesión: {st.session_state}")
|
|
|
|
|
|
def login_register_page():
|
|
st.title("AIdeaText")
|
|
|
|
left_column, right_column = st.columns([1, 3])
|
|
|
|
with left_column:
|
|
tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"])
|
|
|
|
with tab1:
|
|
login_form()
|
|
|
|
with tab2:
|
|
register_form()
|
|
|
|
with right_column:
|
|
display_videos_and_info()
|
|
|
|
|
|
|
|
def login_form():
|
|
username = st.text_input("Correo electrónico", key="login_username")
|
|
password = st.text_input("Contraseña", type="password", key="login_password")
|
|
|
|
if st.button("Iniciar Sesión", key="login_button"):
|
|
success, role = authenticate_user(username, password)
|
|
if success:
|
|
st.session_state.logged_in = True
|
|
st.session_state.username = username
|
|
st.session_state.role = role
|
|
st.session_state.page = 'admin' if role == 'Administrador' else 'user'
|
|
print(f"Inicio de sesión exitoso. Usuario: {username}, Rol: {role}")
|
|
print(f"Estado de sesión después de login: {st.session_state}")
|
|
st.rerun()
|
|
else:
|
|
st.error("Credenciales incorrectas")
|
|
|
|
|
|
def admin_page():
|
|
st.title("Panel de Administración")
|
|
st.write(f"Bienvenida, {st.session_state.username}")
|
|
|
|
st.header("Crear Nuevo Usuario Estudiante")
|
|
new_username = st.text_input("Correo electrónico del nuevo usuario", key="admin_new_username")
|
|
new_password = st.text_input("Contraseña", type="password", key="admin_new_password")
|
|
if st.button("Crear Usuario", key="admin_create_user"):
|
|
if create_student_user(new_username, new_password):
|
|
st.success(f"Usuario estudiante {new_username} creado exitosamente")
|
|
else:
|
|
st.error("Error al crear el usuario estudiante")
|
|
|
|
|
|
|
|
|
|
def user_page():
|
|
|
|
|
|
lang_code = st.session_state.get('lang_code', 'es')
|
|
|
|
translations = {
|
|
'es': {
|
|
'welcome': "Bienvenido a AIdeaText",
|
|
'hello': "Hola",
|
|
'tabs': ["Análisis Morfosintáctico", "Análisis Semántico", "Análisis del Discurso", "Chat", "Mi Progreso", "Formulario de Retroalimentación"]
|
|
},
|
|
'en': {
|
|
'welcome': "Welcome to AIdeaText",
|
|
'hello': "Hello",
|
|
'tabs': ["Morphosyntactic Analysis", "Semantic Analysis", "Discourse Analysis", "Chat", "My Progress", "Feedback Form"]
|
|
},
|
|
'fr': {
|
|
'welcome': "Bienvenue à AIdeaText",
|
|
'hello': "Bonjour",
|
|
'tabs': ["Analyse Morphosyntaxique", "Analyse Sémantique", "Analyse du Discours", "Chat", "Mon Progrès", "Formulaire de Rétroaction"]
|
|
}
|
|
}
|
|
|
|
t = translations[lang_code]
|
|
|
|
st.title(t['welcome'])
|
|
st.write(f"{t['hello']}, {st.session_state.username}")
|
|
|
|
tabs = st.tabs(t['tabs'])
|
|
|
|
with tabs[0]:
|
|
display_morphosyntax_analysis_interface(nlp_models, lang_code)
|
|
with tabs[1]:
|
|
display_semantic_analysis_interface(nlp_models, lang_code)
|
|
with tabs[2]:
|
|
display_discourse_analysis_interface(nlp_models, lang_code)
|
|
with tabs[3]:
|
|
display_chatbot_interface(lang_code)
|
|
with tabs[4]:
|
|
display_student_progress(st.session_state.username, lang_code)
|
|
with tabs[5]:
|
|
display_feedback_form(lang_code)
|
|
|
|
|
|
def display_videos_and_info():
|
|
st.header("Videos: pitch, demos, entrevistas, otros")
|
|
|
|
videos = {
|
|
"Intro AideaText": "https://www.youtube.com/watch?v=UA-md1VxaRc",
|
|
"Presentación fundación Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164",
|
|
"Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s",
|
|
"Entrevista Dr. Guillermo Ruíz": "https://www.youtube.com/watch?v=_ch8cRja3oc",
|
|
"Demo versión desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY"
|
|
}
|
|
|
|
selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys()))
|
|
|
|
if selected_title in videos:
|
|
try:
|
|
st_player(videos[selected_title])
|
|
except Exception as e:
|
|
st.error(f"Error al cargar el video: {str(e)}")
|
|
|
|
st.markdown("""
|
|
## Novedades de la versión actual
|
|
- Nueva función de análisis semántico
|
|
- Soporte para múltiples idiomas
|
|
- Interfaz mejorada para una mejor experiencia de usuario
|
|
""")
|
|
|
|
|
|
def register_form():
|
|
st.header("Solicitar prueba de la aplicación")
|
|
|
|
name = st.text_input("Nombre completo")
|
|
email = st.text_input("Correo electrónico institucional")
|
|
institution = st.text_input("Institución")
|
|
role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"])
|
|
reason = st.text_area("¿Por qué estás interesado en probar AIdeaText?")
|
|
|
|
if st.button("Enviar solicitud"):
|
|
logger.info(f"Attempting to submit application for {email}")
|
|
logger.debug(f"Form data: name={name}, email={email}, institution={institution}, role={role}, reason={reason}")
|
|
|
|
if not name or not email or not institution or not reason:
|
|
logger.warning("Incomplete form submission")
|
|
st.error("Por favor, completa todos los campos.")
|
|
elif not is_institutional_email(email):
|
|
logger.warning(f"Non-institutional email used: {email}")
|
|
st.error("Por favor, utiliza un correo electrónico institucional.")
|
|
else:
|
|
logger.info(f"Attempting to store application for {email}")
|
|
success = store_application_request(name, email, institution, role, reason)
|
|
if success:
|
|
st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.")
|
|
logger.info(f"Application request stored successfully for {email}")
|
|
else:
|
|
st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.")
|
|
logger.error(f"Failed to store application request for {email}")
|
|
|
|
|
|
def display_feedback_form(lang_code):
|
|
logging.info(f"display_feedback_form called with lang_code: {lang_code}")
|
|
translations = {
|
|
'es': {
|
|
'title': "Formulario de Retroalimentación",
|
|
'name': "Nombre",
|
|
'email': "Correo electrónico",
|
|
'feedback': "Tu retroalimentación",
|
|
'submit': "Enviar",
|
|
'success': "¡Gracias por tu retroalimentación!",
|
|
'error': "Hubo un problema al enviar el formulario. Por favor, intenta de nuevo."
|
|
},
|
|
'en': {
|
|
'title': "Feedback Form",
|
|
'name': "Name",
|
|
'email': "Email",
|
|
'feedback': "Your feedback",
|
|
'submit': "Submit",
|
|
'success': "Thank you for your feedback!",
|
|
'error': "There was a problem submitting the form. Please try again."
|
|
},
|
|
'fr': {
|
|
'title': "Formulaire de Rétroaction",
|
|
'name': "Nom",
|
|
'email': "Adresse e-mail",
|
|
'feedback': "Votre rétroaction",
|
|
'submit': "Envoyer",
|
|
'success': "Merci pour votre rétroaction !",
|
|
'error': "Un problème est survenu lors de l'envoi du formulaire. Veuillez réessayer."
|
|
}
|
|
}
|
|
|
|
t = translations[lang_code]
|
|
|
|
st.header(t['title'])
|
|
|
|
name = st.text_input(t['name'])
|
|
email = st.text_input(t['email'])
|
|
feedback = st.text_area(t['feedback'])
|
|
|
|
if st.button(t['submit']):
|
|
if name and email and feedback:
|
|
if store_user_feedback(st.session_state.username, name, email, feedback):
|
|
st.success(t['success'])
|
|
else:
|
|
st.error(t['error'])
|
|
else:
|
|
st.warning("Por favor, completa todos los campos.")
|
|
|
|
|
|
def is_institutional_email(email):
|
|
forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com']
|
|
return not any(domain in email.lower() for domain in forbidden_domains)
|
|
|
|
|
|
def display_student_progress(username, lang_code='es'):
|
|
student_data = get_student_data(username)
|
|
|
|
if student_data is None or len(student_data['entries']) == 0:
|
|
st.warning("No se encontraron datos para este estudiante.")
|
|
st.info("Intenta realizar algunos análisis de texto primero.")
|
|
return
|
|
|
|
st.title(f"Progreso de {username}")
|
|
|
|
with st.expander("Resumen de Actividades y Progreso", expanded=True):
|
|
|
|
total_entries = len(student_data['entries'])
|
|
st.write(f"Total de análisis realizados: {total_entries}")
|
|
|
|
|
|
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
|
analysis_counts = pd.Series(analysis_types).value_counts()
|
|
|
|
fig, ax = plt.subplots()
|
|
analysis_counts.plot(kind='bar', ax=ax)
|
|
ax.set_title("Tipos de análisis realizados")
|
|
ax.set_xlabel("Tipo de análisis")
|
|
ax.set_ylabel("Cantidad")
|
|
st.pyplot(fig)
|
|
|
|
|
|
dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']]
|
|
analysis_counts = pd.Series(dates).value_counts().sort_index()
|
|
|
|
fig, ax = plt.subplots()
|
|
analysis_counts.plot(kind='line', ax=ax)
|
|
ax.set_title("Análisis realizados a lo largo del tiempo")
|
|
ax.set_xlabel("Fecha")
|
|
ax.set_ylabel("Cantidad de análisis")
|
|
st.pyplot(fig)
|
|
|
|
|
|
with st.expander("Histórico de Análisis Morfosintácticos"):
|
|
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
|
|
for entry in morphosyntax_entries:
|
|
st.subheader(f"Análisis del {entry['timestamp']}")
|
|
if entry['arc_diagrams']:
|
|
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
|
|
|
|
|
|
|
|
with st.expander("Histórico de Análisis Semánticos"):
|
|
semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
|
|
st.write(f"Número total de entradas semánticas: {len(semantic_entries)}")
|
|
for entry in semantic_entries:
|
|
st.subheader(f"Análisis del {entry['timestamp']}")
|
|
st.write(f"Archivo analizado: {entry.get('filename', 'Nombre no disponible')}")
|
|
st.write(f"Claves disponibles en esta entrada: {', '.join(entry.keys())}")
|
|
|
|
|
|
if 'network_diagram' in entry:
|
|
try:
|
|
logger.info(f"Longitud de la imagen recuperada: {len(entry['network_diagram'])}")
|
|
st.image(f"data:image/png;base64,{entry['network_diagram']}")
|
|
except Exception as e:
|
|
st.error(f"No se pudo mostrar la imagen: {str(e)}")
|
|
st.write("Datos de la imagen (para depuración):")
|
|
st.write(entry['network_diagram'][:100] + "...")
|
|
else:
|
|
logger.warning(f"No se encontró 'relations_graph' en la entrada: {entry.keys()}")
|
|
st.write("No se encontró el gráfico para este análisis.")
|
|
|
|
|
|
with st.expander("Histórico de Análisis Discursivos"):
|
|
discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
|
|
for entry in discourse_entries:
|
|
st.subheader(f"Análisis del {entry['timestamp']}")
|
|
st.write(f"Archivo patrón: {entry.get('filename1', 'Nombre no disponible')}")
|
|
st.write(f"Archivo comparado: {entry.get('filename2', 'Nombre no disponible')}")
|
|
|
|
try:
|
|
|
|
if 'graph1' in entry and 'graph2' in entry:
|
|
img1 = Image.open(BytesIO(base64.b64decode(entry['graph1'])))
|
|
img2 = Image.open(BytesIO(base64.b64decode(entry['graph2'])))
|
|
|
|
|
|
total_width = img1.width + img2.width
|
|
max_height = max(img1.height, img2.height)
|
|
combined_img = Image.new('RGB', (total_width, max_height))
|
|
|
|
|
|
combined_img.paste(img1, (0, 0))
|
|
combined_img.paste(img2, (img1.width, 0))
|
|
|
|
|
|
buffered = BytesIO()
|
|
combined_img.save(buffered, format="PNG")
|
|
img_str = base64.b64encode(buffered.getvalue()).decode()
|
|
|
|
|
|
st.image(f"data:image/png;base64,{img_str}")
|
|
elif 'combined_graph' in entry:
|
|
|
|
img_bytes = base64.b64decode(entry['combined_graph'])
|
|
st.image(img_bytes)
|
|
else:
|
|
st.write("No se encontraron gráficos para este análisis.")
|
|
except Exception as e:
|
|
st.error(f"No se pudieron mostrar los gráficos: {str(e)}")
|
|
st.write("Datos de los gráficos (para depuración):")
|
|
if 'graph1' in entry:
|
|
st.write("Graph 1:", entry['graph1'][:100] + "...")
|
|
if 'graph2' in entry:
|
|
st.write("Graph 2:", entry['graph2'][:100] + "...")
|
|
if 'combined_graph' in entry:
|
|
st.write("Combined Graph:", entry['combined_graph'][:100] + "...")
|
|
|
|
|
|
|
|
with st.expander("Histórico de Conversaciones con el ChatBot"):
|
|
if 'chat_history' in student_data:
|
|
for i, chat in enumerate(student_data['chat_history']):
|
|
st.subheader(f"Conversación {i+1} - {chat['timestamp']}")
|
|
for message in chat['messages']:
|
|
if message['role'] == 'user':
|
|
st.write("Usuario: " + message['content'])
|
|
else:
|
|
st.write("Asistente: " + message['content'])
|
|
st.write("---")
|
|
else:
|
|
st.write("No se encontraron conversaciones con el ChatBot.")
|
|
|
|
|
|
if st.checkbox("Mostrar datos de depuración"):
|
|
st.write("Datos del estudiante (para depuración):")
|
|
st.json(student_data)
|
|
|
|
|
|
def display_morphosyntax_analysis_interface(nlp_models, lang_code):
|
|
translations = {
|
|
'es': {
|
|
'title': "AIdeaText - Análisis morfológico y sintáctico",
|
|
'input_label': "Ingrese un texto para analizar (máximo 5,000 palabras",
|
|
'input_placeholder': "Esta funcionalidad le ayudará con dos competencias:\n"
|
|
"[1] \"Escribe diversos tipos de textos en su lengua materna\"\n"
|
|
"[2] \"Lee diversos tipos de textos escritos en su lengua materna\"\n\n"
|
|
"Ingrese su texto aquí para analizar...",
|
|
'analyze_button': "Analizar texto",
|
|
'repeated_words': "Palabras repetidas",
|
|
'legend': "Leyenda: Categorías gramaticales",
|
|
'arc_diagram': "Análisis sintáctico: Diagrama de arco",
|
|
'sentence': "Oración",
|
|
'success_message': "Análisis guardado correctamente.",
|
|
'error_message': "Hubo un problema al guardar el análisis. Por favor, inténtelo de nuevo.",
|
|
'warning_message': "Por favor, ingrese un texto para analizar.",
|
|
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.",
|
|
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.",
|
|
'pos_analysis': "Análisis de categorías gramaticales",
|
|
'morphological_analysis': "Análisis morfológico",
|
|
'sentence_structure': "Estructura de oraciones",
|
|
'word': "Palabra",
|
|
'count': "Cantidad",
|
|
'percentage': "Porcentaje",
|
|
'examples': "Ejemplos",
|
|
'lemma': "Lema",
|
|
'tag': "Etiqueta",
|
|
'dep': "Dependencia",
|
|
'morph': "Morfología",
|
|
'root': "Raíz",
|
|
'subjects': "Sujetos",
|
|
'objects': "Objetos",
|
|
'verbs': "Verbos",
|
|
'grammatical_category': "Categoría gramatical",
|
|
'dependency': "Dependencia",
|
|
'morphology': "Morfología"
|
|
},
|
|
'en': {
|
|
'title': "AIdeaText - Morphological and Syntactic Analysis",
|
|
'input_label': "Enter a text to analyze (max 5,000 words):",
|
|
'input_placeholder': "This functionality will help you with two competencies:\n"
|
|
"[1] \"Write various types of texts in your native language\"\n"
|
|
"[2] \"Read various types of written texts in your native language\"\n\n"
|
|
"Enter your text here to analyze...",
|
|
'analyze_button': "Analyze text",
|
|
'repeated_words': "Repeated words",
|
|
'legend': "Legend: Grammatical categories",
|
|
'arc_diagram': "Syntactic analysis: Arc diagram",
|
|
'sentence': "Sentence",
|
|
'success_message': "Analysis saved successfully.",
|
|
'error_message': "There was a problem saving the analysis. Please try again.",
|
|
'warning_message': "Please enter a text to analyze.",
|
|
'initial_message': "Enter a text and press 'Analyze text' to start.",
|
|
'no_results': "No results available. Please perform an analysis first.",
|
|
'pos_analysis': "Part of Speech Analysis",
|
|
'morphological_analysis': "Morphological Analysis",
|
|
'sentence_structure': "Sentence Structure",
|
|
'word': "Word",
|
|
'count': "Count",
|
|
'percentage': "Percentage",
|
|
'examples': "Examples",
|
|
'lemma': "Lemma",
|
|
'tag': "Tag",
|
|
'dep': "Dependency",
|
|
'morph': "Morphology",
|
|
'root': "Root",
|
|
'subjects': "Subjects",
|
|
'objects': "Objects",
|
|
'verbs': "Verbs",
|
|
'grammatical_category': "Grammatical category",
|
|
'dependency': "Dependency",
|
|
'morphology': "Morphology"
|
|
},
|
|
'fr': {
|
|
'title': "AIdeaText - Analyse morphologique et syntaxique",
|
|
'input_label': "Entrez un texte à analyser (max 5 000 mots) :",
|
|
'input_placeholder': "Cette fonctionnalité vous aidera avec deux compétences :\n"
|
|
"[1] \"Écrire divers types de textes dans votre langue maternelle\"\n"
|
|
"[2] \"Lire divers types de textes écrits dans votre langue maternelle\"\n\n"
|
|
"Entrez votre texte ici pour l'analyser...",
|
|
'analyze_button': "Analyser le texte",
|
|
'repeated_words': "Mots répétés",
|
|
'legend': "Légende : Catégories grammaticales",
|
|
'arc_diagram': "Analyse syntaxique : Diagramme en arc",
|
|
'sentence': "Phrase",
|
|
'success_message': "Analyse enregistrée avec succès.",
|
|
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse. Veuillez réessayer.",
|
|
'warning_message': "Veuillez entrer un texte à analyser.",
|
|
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
|
|
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.",
|
|
'pos_analysis': "Analyse des parties du discours",
|
|
'morphological_analysis': "Analyse morphologique",
|
|
'sentence_structure': "Structure des phrases",
|
|
'word': "Mot",
|
|
'count': "Nombre",
|
|
'percentage': "Pourcentage",
|
|
'examples': "Exemples",
|
|
'lemma': "Lemme",
|
|
'tag': "Étiquette",
|
|
'dep': "Dépendance",
|
|
'morph': "Morphologie",
|
|
'root': "Racine",
|
|
'subjects': "Sujets",
|
|
'objects': "Objets",
|
|
'verbs': "Verbes",
|
|
'grammatical_category': "Catégorie grammaticale",
|
|
'dependency': "Dépendance",
|
|
'morphology': "Morphologie"
|
|
}
|
|
}
|
|
|
|
t = translations[lang_code]
|
|
|
|
input_key = f"morphosyntax_input_{lang_code}"
|
|
|
|
if input_key not in st.session_state:
|
|
st.session_state[input_key] = ""
|
|
|
|
sentence_input = st.text_area(
|
|
t['input_label'],
|
|
height=150,
|
|
placeholder=t['input_placeholder'],
|
|
value=st.session_state[input_key],
|
|
key=f"text_area_{lang_code}",
|
|
on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"])
|
|
)
|
|
|
|
if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"):
|
|
current_input = st.session_state[input_key]
|
|
if current_input:
|
|
doc = nlp_models[lang_code](current_input)
|
|
|
|
|
|
advanced_analysis = perform_advanced_morphosyntactic_analysis(current_input, nlp_models[lang_code])
|
|
|
|
|
|
st.session_state.morphosyntax_result = {
|
|
'doc': doc,
|
|
'advanced_analysis': advanced_analysis
|
|
}
|
|
|
|
|
|
display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t)
|
|
|
|
|
|
if store_morphosyntax_result(
|
|
st.session_state.username,
|
|
current_input,
|
|
get_repeated_words_colors(doc),
|
|
advanced_analysis['arc_diagram'],
|
|
advanced_analysis['pos_analysis'],
|
|
advanced_analysis['morphological_analysis'],
|
|
advanced_analysis['sentence_structure']
|
|
):
|
|
st.success(t['success_message'])
|
|
else:
|
|
st.error(t['error_message'])
|
|
else:
|
|
st.warning(t['warning_message'])
|
|
elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None:
|
|
|
|
|
|
display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t)
|
|
else:
|
|
st.info(t['initial_message'])
|
|
|
|
def display_morphosyntax_results(result, lang_code, t):
|
|
if result is None:
|
|
st.warning(t['no_results'])
|
|
return
|
|
|
|
doc = result['doc']
|
|
advanced_analysis = result['advanced_analysis']
|
|
|
|
|
|
st.markdown(f"##### {t['legend']}")
|
|
legend_html = "<div style='display: flex; flex-wrap: wrap;'>"
|
|
for pos, color in POS_COLORS.items():
|
|
if pos in POS_TRANSLATIONS[lang_code]:
|
|
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>"
|
|
legend_html += "</div>"
|
|
st.markdown(legend_html, unsafe_allow_html=True)
|
|
|
|
|
|
word_colors = get_repeated_words_colors(doc)
|
|
with st.expander(t['repeated_words'], expanded=True):
|
|
highlighted_text = highlight_repeated_words(doc, word_colors)
|
|
st.markdown(highlighted_text, unsafe_allow_html=True)
|
|
|
|
|
|
with st.expander(t['sentence_structure'], expanded=True):
|
|
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']):
|
|
sentence_str = (
|
|
f"**{t['sentence']} {i+1}** "
|
|
f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- "
|
|
f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- "
|
|
f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- "
|
|
f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}"
|
|
)
|
|
st.markdown(sentence_str)
|
|
|
|
|
|
col1, col2 = st.columns(2)
|
|
|
|
with col1:
|
|
with st.expander(t['pos_analysis'], expanded=True):
|
|
pos_df = pd.DataFrame(advanced_analysis['pos_analysis'])
|
|
|
|
|
|
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
|
|
|
|
|
|
pos_df = pos_df.rename(columns={
|
|
'pos': t['grammatical_category'],
|
|
'count': t['count'],
|
|
'percentage': t['percentage'],
|
|
'examples': t['examples']
|
|
})
|
|
|
|
|
|
st.dataframe(pos_df)
|
|
|
|
with col2:
|
|
with st.expander(t['morphological_analysis'], expanded=True):
|
|
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis'])
|
|
|
|
|
|
column_mapping = {
|
|
'text': t['word'],
|
|
'lemma': t['lemma'],
|
|
'pos': t['grammatical_category'],
|
|
'dep': t['dependency'],
|
|
'morph': t['morphology']
|
|
}
|
|
|
|
|
|
morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns})
|
|
|
|
|
|
morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
|
|
|
|
|
|
dep_translations = {
|
|
'es': {
|
|
'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto',
|
|
'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto',
|
|
'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado',
|
|
'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso',
|
|
'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal',
|
|
'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva',
|
|
'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador',
|
|
'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo',
|
|
'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis',
|
|
'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación'
|
|
},
|
|
'en': {
|
|
'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object',
|
|
'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement',
|
|
'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier',
|
|
'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker',
|
|
'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun',
|
|
'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking',
|
|
'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression',
|
|
'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan',
|
|
'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation'
|
|
},
|
|
'fr': {
|
|
'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect',
|
|
'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique',
|
|
'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial',
|
|
'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal',
|
|
'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant',
|
|
'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée',
|
|
'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin',
|
|
'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation'
|
|
}
|
|
}
|
|
morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x))
|
|
|
|
|
|
def translate_morph(morph_string, lang_code):
|
|
morph_translations = {
|
|
'es': {
|
|
'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido',
|
|
'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo',
|
|
'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz',
|
|
'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural',
|
|
'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo',
|
|
'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado',
|
|
'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto'
|
|
},
|
|
'en': {
|
|
'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person',
|
|
'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice',
|
|
'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative',
|
|
'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle',
|
|
'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect'
|
|
},
|
|
'fr': {
|
|
'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom',
|
|
'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix',
|
|
'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif',
|
|
'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe',
|
|
'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait'
|
|
}
|
|
}
|
|
for key, value in morph_translations[lang_code].items():
|
|
morph_string = morph_string.replace(key, value)
|
|
return morph_string
|
|
|
|
morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code))
|
|
|
|
|
|
columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']]
|
|
columns_to_display = [col for col in columns_to_display if col in morph_df.columns]
|
|
|
|
|
|
st.dataframe(morph_df[columns_to_display])
|
|
|
|
|
|
with st.expander(t['arc_diagram'], expanded=True):
|
|
sentences = list(doc.sents)
|
|
arc_diagrams = []
|
|
for i, sent in enumerate(sentences):
|
|
st.subheader(f"{t['sentence']} {i+1}")
|
|
html = displacy.render(sent, style="dep", options={"distance": 100})
|
|
html = html.replace('height="375"', 'height="200"')
|
|
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
|
|
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
|
|
st.write(html, unsafe_allow_html=True)
|
|
arc_diagrams.append(html)
|
|
|
|
|
|
def display_semantic_analysis_interface(nlp_models, lang_code):
|
|
translations = {
|
|
'es': {
|
|
'title': "AIdeaText - Análisis semántico",
|
|
'text_input_label': "Ingrese un texto para analizar (máx. 5,000 palabras):",
|
|
'text_input_placeholder': "El objetivo de esta aplicación es que mejore sus habilidades de redacción...",
|
|
'file_uploader': "O cargue un archivo de texto",
|
|
'analyze_button': "Analizar texto",
|
|
'conceptual_relations': "Relaciones Conceptuales",
|
|
'identified_entities': "Entidades Identificadas",
|
|
'key_concepts': "Conceptos Clave",
|
|
'success_message': "Análisis semántico guardado correctamente.",
|
|
'error_message': "Hubo un problema al guardar el análisis semántico. Por favor, inténtelo de nuevo.",
|
|
'warning_message': "Por favor, ingrese un texto o cargue un archivo para analizar.",
|
|
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.",
|
|
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero."
|
|
},
|
|
'en': {
|
|
'title': "AIdeaText - Semantic Analysis",
|
|
'text_input_label': "Enter a text to analyze (max. 5,000 words):",
|
|
'text_input_placeholder': "The goal of this application is to improve your writing skills...",
|
|
'file_uploader': "Or upload a text file",
|
|
'analyze_button': "Analyze text",
|
|
'conceptual_relations': "Conceptual Relations",
|
|
'identified_entities': "Identified Entities",
|
|
'key_concepts': "Key Concepts",
|
|
'success_message': "Semantic analysis saved successfully.",
|
|
'error_message': "There was a problem saving the semantic analysis. Please try again.",
|
|
'warning_message': "Please enter a text or upload a file to analyze.",
|
|
'initial_message': "Enter a text and press 'Analyze text' to start.",
|
|
'no_results': "No results available. Please perform an analysis first."
|
|
},
|
|
'fr': {
|
|
'title': "AIdeaText - Analyse sémantique",
|
|
'text_input_label': "Entrez un texte à analyser (max. 5 000 mots) :",
|
|
'text_input_placeholder': "L'objectif de cette application est d'améliorer vos compétences en rédaction...",
|
|
'file_uploader': "Ou téléchargez un fichier texte",
|
|
'analyze_button': "Analyser le texte",
|
|
'conceptual_relations': "Relations Conceptuelles",
|
|
'identified_entities': "Entités Identifiées",
|
|
'key_concepts': "Concepts Clés",
|
|
'success_message': "Analyse sémantique enregistrée avec succès.",
|
|
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse sémantique. Veuillez réessayer.",
|
|
'warning_message': "Veuillez entrer un texte ou télécharger un fichier à analyser.",
|
|
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
|
|
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse."
|
|
}
|
|
}
|
|
|
|
t = translations[lang_code]
|
|
|
|
st.header(t['title'])
|
|
|
|
|
|
text_input = st.text_area(
|
|
t['text_input_label'],
|
|
height=150,
|
|
placeholder=t['text_input_placeholder'],
|
|
)
|
|
|
|
|
|
uploaded_file = st.file_uploader(t['file_uploader'], type=['txt'])
|
|
|
|
if st.button(t['analyze_button']):
|
|
if text_input or uploaded_file is not None:
|
|
if uploaded_file:
|
|
text_content = uploaded_file.getvalue().decode('utf-8')
|
|
else:
|
|
text_content = text_input
|
|
|
|
|
|
analysis_result = perform_semantic_analysis(text_content, nlp_models[lang_code], lang_code)
|
|
|
|
|
|
st.session_state.semantic_result = analysis_result
|
|
|
|
|
|
display_semantic_results(st.session_state.semantic_result, lang_code, t)
|
|
|
|
|
|
if store_semantic_result(st.session_state.username, text_content, analysis_result):
|
|
st.success(t['success_message'])
|
|
else:
|
|
st.error(t['error_message'])
|
|
else:
|
|
st.warning(t['warning_message'])
|
|
|
|
elif 'semantic_result' in st.session_state:
|
|
|
|
|
|
display_semantic_results(st.session_state.semantic_result, lang_code, t)
|
|
|
|
else:
|
|
st.info(t['initial_message'])
|
|
|
|
def display_semantic_results(result, lang_code, t):
|
|
if result is None:
|
|
st.warning(t['no_results'])
|
|
return
|
|
|
|
|
|
with st.expander(t['key_concepts'], expanded=True):
|
|
concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']])
|
|
st.write(concept_text)
|
|
|
|
|
|
with st.expander(t['conceptual_relations'], expanded=True):
|
|
st.pyplot(result['relations_graph'])
|
|
|
|
|
|
def display_discourse_analysis_interface(nlp_models, lang_code):
|
|
translations = {
|
|
'es': {
|
|
'title': "AIdeaText - Análisis del discurso",
|
|
'file_uploader1': "Cargar archivo de texto 1 (Patrón)",
|
|
'file_uploader2': "Cargar archivo de texto 2 (Comparación)",
|
|
'analyze_button': "Analizar textos",
|
|
'comparison': "Comparación de Relaciones Semánticas",
|
|
'success_message': "Análisis del discurso guardado correctamente.",
|
|
'error_message': "Hubo un problema al guardar el análisis del discurso. Por favor, inténtelo de nuevo.",
|
|
'warning_message': "Por favor, cargue ambos archivos para analizar.",
|
|
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.",
|
|
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.",
|
|
'key_concepts': "Conceptos Clave",
|
|
'graph_not_available': "El gráfico no está disponible.",
|
|
'concepts_not_available': "Los conceptos clave no están disponibles.",
|
|
'comparison_not_available': "La comparación no está disponible."
|
|
},
|
|
'en': {
|
|
'title': "AIdeaText - Discourse Analysis",
|
|
'file_uploader1': "Upload text file 1 (Pattern)",
|
|
'file_uploader2': "Upload text file 2 (Comparison)",
|
|
'analyze_button': "Analyze texts",
|
|
'comparison': "Comparison of Semantic Relations",
|
|
'success_message': "Discourse analysis saved successfully.",
|
|
'error_message': "There was a problem saving the discourse analysis. Please try again.",
|
|
'warning_message': "Please upload both files to analyze.",
|
|
'initial_message': "Enter a text and press 'Analyze text' to start.",
|
|
'no_results': "No results available. Please perform an analysis first.",
|
|
'key_concepts': "Key Concepts",
|
|
'graph_not_available': "The graph is not available.",
|
|
'concepts_not_available': "Key concepts are not available.",
|
|
'comparison_not_available': "The comparison is not available."
|
|
},
|
|
'fr': {
|
|
'title': "AIdeaText - Analyse du discours",
|
|
'file_uploader1': "Télécharger le fichier texte 1 (Modèle)",
|
|
'file_uploader2': "Télécharger le fichier texte 2 (Comparaison)",
|
|
'analyze_button': "Analyser les textes",
|
|
'comparison': "Comparaison des Relations Sémantiques",
|
|
'success_message': "Analyse du discours enregistrée avec succès.",
|
|
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse du discours. Veuillez réessayer.",
|
|
'warning_message': "Veuillez télécharger les deux fichiers à analyser.",
|
|
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
|
|
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.",
|
|
'key_concepts': "Concepts Clés",
|
|
'graph_not_available': "Le graphique n'est pas disponible.",
|
|
'concepts_not_available': "Les concepts clés ne sont pas disponibles.",
|
|
'comparison_not_available': "La comparaison n'est pas disponible."
|
|
}
|
|
}
|
|
|
|
t = translations[lang_code]
|
|
st.header(t['title'])
|
|
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
uploaded_file1 = st.file_uploader(t['file_uploader1'], type=['txt'])
|
|
with col2:
|
|
uploaded_file2 = st.file_uploader(t['file_uploader2'], type=['txt'])
|
|
|
|
if st.button(t['analyze_button']):
|
|
if uploaded_file1 is not None and uploaded_file2 is not None:
|
|
text_content1 = uploaded_file1.getvalue().decode('utf-8')
|
|
text_content2 = uploaded_file2.getvalue().decode('utf-8')
|
|
|
|
|
|
analysis_result = perform_discourse_analysis(text_content1, text_content2, nlp_models[lang_code], lang_code)
|
|
|
|
|
|
st.session_state.discourse_result = analysis_result
|
|
|
|
|
|
display_discourse_results(st.session_state.discourse_result, lang_code, t)
|
|
|
|
|
|
if store_discourse_analysis_result(st.session_state.username, text_content1, text_content2, analysis_result):
|
|
st.success(t['success_message'])
|
|
else:
|
|
st.error(t['error_message'])
|
|
else:
|
|
st.warning(t['warning_message'])
|
|
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None:
|
|
|
|
display_discourse_results(st.session_state.discourse_result, lang_code, t)
|
|
else:
|
|
st.info(t['initial_message'])
|
|
|
|
|
|
def display_discourse_results(result, lang_code, t):
|
|
if result is None:
|
|
st.warning(t.get('no_results', "No hay resultados disponibles."))
|
|
return
|
|
|
|
def clean_and_convert(value):
|
|
if isinstance(value, (int, float)):
|
|
return float(value)
|
|
elif isinstance(value, str):
|
|
try:
|
|
return float(value.replace(',', '.'))
|
|
except ValueError:
|
|
return 0.0
|
|
return 0.0
|
|
|
|
def process_key_concepts(key_concepts):
|
|
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
|
|
df['Frecuencia'] = df['Frecuencia'].apply(clean_and_convert)
|
|
return df
|
|
|
|
col1, col2 = st.columns(2)
|
|
|
|
with col1:
|
|
with st.expander(t.get('file_uploader1', "Documento 1"), expanded=True):
|
|
if 'graph1' in result:
|
|
st.pyplot(result['graph1'])
|
|
else:
|
|
st.warning(t.get('graph_not_available', "El gráfico no está disponible."))
|
|
st.subheader(t.get('key_concepts', "Conceptos Clave"))
|
|
if 'key_concepts1' in result:
|
|
df1 = process_key_concepts(result['key_concepts1'])
|
|
st.table(df1)
|
|
else:
|
|
st.warning(t.get('concepts_not_available', "Los conceptos clave no están disponibles."))
|
|
|
|
with col2:
|
|
with st.expander(t.get('file_uploader2', "Documento 2"), expanded=True):
|
|
if 'graph2' in result:
|
|
st.pyplot(result['graph2'])
|
|
else:
|
|
st.warning(t.get('graph_not_available', "El gráfico no está disponible."))
|
|
st.subheader(t.get('key_concepts', "Conceptos Clave"))
|
|
if 'key_concepts2' in result:
|
|
df2 = process_key_concepts(result['key_concepts2'])
|
|
st.table(df2)
|
|
else:
|
|
st.warning(t.get('concepts_not_available', "Los conceptos clave no están disponibles."))
|
|
|
|
|
|
st.subheader(t.get('comparison', "Comparación de conceptos entre ambos documentos"))
|
|
if 'key_concepts1' in result and 'key_concepts2' in result:
|
|
df1 = process_key_concepts(result['key_concepts1']).set_index('Concepto')
|
|
df2 = process_key_concepts(result['key_concepts2']).set_index('Concepto')
|
|
|
|
df_comparison = pd.concat([df1, df2], axis=1, keys=[t.get('file_uploader1', "Documento 1"), t.get('file_uploader2', "Documento 2")])
|
|
df_comparison = df_comparison.fillna(0.0)
|
|
|
|
|
|
for col in df_comparison.columns:
|
|
df_comparison[col] = df_comparison[col].astype(float)
|
|
|
|
|
|
try:
|
|
st.dataframe(df_comparison.style.format("{:.2f}"), width=1000)
|
|
except Exception as e:
|
|
st.error(f"Error al mostrar el DataFrame: {str(e)}")
|
|
st.write("DataFrame sin formato:")
|
|
st.write(df_comparison)
|
|
else:
|
|
st.warning(t.get('comparison_not_available', "La comparación no está disponible."))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def display_chatbot_interface(lang_code):
|
|
translations = {
|
|
'es': {
|
|
'title': "Expertos en Vacaciones",
|
|
'input_placeholder': "Escribe tu mensaje aquí...",
|
|
'initial_message': "¡Hola! ¿Cómo podemos ayudarte?"
|
|
},
|
|
'en': {
|
|
'title': "Vacation Experts",
|
|
'input_placeholder': "Type your message here...",
|
|
'initial_message': "Hi! How can we help you?"
|
|
},
|
|
'fr': {
|
|
'title': "Experts en Vacances",
|
|
'input_placeholder': "Écrivez votre message ici...",
|
|
'initial_message': "Bonjour! Comment pouvons-nous vous aider?"
|
|
}
|
|
}
|
|
t = translations[lang_code]
|
|
st.title(t['title'])
|
|
|
|
if 'chatbot' not in st.session_state:
|
|
st.session_state.chatbot = initialize_chatbot()
|
|
if 'messages' not in st.session_state:
|
|
st.session_state.messages = [{"role": "assistant", "content": t['initial_message']}]
|
|
|
|
|
|
chat_container = st.container()
|
|
|
|
|
|
with chat_container:
|
|
for message in st.session_state.messages:
|
|
with st.chat_message(message["role"]):
|
|
st.markdown(message["content"])
|
|
|
|
|
|
user_input = st.chat_input(t['input_placeholder'])
|
|
|
|
if user_input:
|
|
|
|
st.session_state.messages.append({"role": "user", "content": user_input})
|
|
|
|
|
|
with chat_container:
|
|
with st.chat_message("user"):
|
|
st.markdown(user_input)
|
|
|
|
|
|
with chat_container:
|
|
with st.chat_message("assistant"):
|
|
message_placeholder = st.empty()
|
|
full_response = ""
|
|
for chunk in get_chatbot_response(st.session_state.chatbot, user_input, lang_code):
|
|
full_response += chunk
|
|
message_placeholder.markdown(full_response + "▌")
|
|
message_placeholder.markdown(full_response)
|
|
|
|
|
|
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
|
|
|
|
|
try:
|
|
store_chat_history(st.session_state.username, st.session_state.messages)
|
|
st.success("Conversación guardada exitosamente")
|
|
except Exception as e:
|
|
st.error(f"Error al guardar la conversación: {str(e)}")
|
|
logger.error(f"Error al guardar el historial de chat para {st.session_state.username}: {str(e)}")
|
|
|
|
|
|
st.markdown('<script>window.scrollTo(0,document.body.scrollHeight);</script>', unsafe_allow_html=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |