|
|
|
|
|
|
|
import streamlit as st |
|
import re |
|
import io |
|
from io import BytesIO |
|
import pandas as pd |
|
import numpy as np |
|
import time |
|
import matplotlib.pyplot as plt |
|
from datetime import datetime |
|
from spacy import displacy |
|
import random |
|
import base64 |
|
import seaborn as sns |
|
import logging |
|
|
|
|
|
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis |
|
from ..database.semantic_mongo_db import get_student_semantic_analysis |
|
from ..database.discourse_mongo_db import get_student_discourse_analysis |
|
from ..database.chat_mongo_db import get_chat_history |
|
from ..database.current_situation_mongo_db import get_current_situation_analysis |
|
from ..database.claude_recommendations_mongo_db import get_claude_recommendations |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def display_student_activities(username: str, lang_code: str, t: dict): |
|
""" |
|
Muestra todas las actividades del estudiante |
|
Args: |
|
username: Nombre del estudiante |
|
lang_code: C贸digo del idioma |
|
t: Diccionario de traducciones |
|
""" |
|
try: |
|
st.header(t.get('activities_title', 'Mis Actividades')) |
|
|
|
|
|
tabs = st.tabs([ |
|
t.get('morpho_activities', 'An谩lisis Morfosint谩ctico'), |
|
t.get('semantic_activities', 'An谩lisis Sem谩ntico'), |
|
t.get('discourse_activities', 'An谩lisis del Discurso'), |
|
t.get('current_situation_activities', 'Mi Situaci贸n Actual'), |
|
t.get('chat_activities', 'Conversaciones con el Asistente') |
|
]) |
|
|
|
|
|
with tabs[0]: |
|
display_morphosyntax_activities(username, t) |
|
|
|
|
|
with tabs[1]: |
|
display_semantic_activities(username, t) |
|
|
|
|
|
with tabs[2]: |
|
display_discourse_activities(username, t) |
|
|
|
|
|
with tabs[3]: |
|
display_current_situation_activities(username, t) |
|
|
|
|
|
with tabs[4]: |
|
display_chat_activities(username, t) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando actividades: {str(e)}") |
|
st.error(t.get('error_loading_activities', 'Error al cargar las actividades')) |
|
|
|
|
|
|
|
def display_morphosyntax_activities(username: str, t: dict): |
|
"""Muestra actividades de an谩lisis morfosint谩ctico""" |
|
try: |
|
analyses = get_student_morphosyntax_analysis(username) |
|
if not analyses: |
|
st.info(t.get('no_morpho_analyses', 'No hay an谩lisis morfosint谩cticos registrados')) |
|
return |
|
|
|
for analysis in analyses: |
|
with st.expander( |
|
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", |
|
expanded=False |
|
): |
|
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:") |
|
st.write(analysis['text']) |
|
|
|
if 'arc_diagrams' in analysis: |
|
st.subheader(t.get('syntactic_diagrams', 'Diagramas sint谩cticos')) |
|
for diagram in analysis['arc_diagrams']: |
|
st.write(diagram, unsafe_allow_html=True) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando an谩lisis morfosint谩ctico: {str(e)}") |
|
st.error(t.get('error_morpho', 'Error al mostrar an谩lisis morfosint谩ctico')) |
|
|
|
|
|
|
|
|
|
def display_semantic_activities(username: str, t: dict): |
|
"""Muestra actividades de an谩lisis sem谩ntico""" |
|
try: |
|
logger.info(f"Recuperando an谩lisis sem谩ntico para {username}") |
|
analyses = get_student_semantic_analysis(username) |
|
|
|
if not analyses: |
|
logger.info("No se encontraron an谩lisis sem谩nticos") |
|
st.info(t.get('no_semantic_analyses', 'No hay an谩lisis sem谩nticos registrados')) |
|
return |
|
|
|
logger.info(f"Procesando {len(analyses)} an谩lisis sem谩nticos") |
|
|
|
for analysis in analyses: |
|
try: |
|
|
|
if not all(key in analysis for key in ['timestamp', 'concept_graph']): |
|
logger.warning(f"An谩lisis incompleto: {analysis.keys()}") |
|
continue |
|
|
|
|
|
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) |
|
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") |
|
|
|
|
|
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): |
|
|
|
if analysis.get('concept_graph'): |
|
try: |
|
|
|
logger.debug("Decodificando gr谩fico de conceptos") |
|
image_data = analysis['concept_graph'] |
|
|
|
|
|
if isinstance(image_data, bytes): |
|
image_bytes = image_data |
|
else: |
|
|
|
image_bytes = base64.b64decode(image_data) |
|
|
|
logger.debug(f"Longitud de bytes de imagen: {len(image_bytes)}") |
|
|
|
|
|
st.image( |
|
image_bytes, |
|
caption=t.get('concept_network', 'Red de Conceptos'), |
|
use_column_width=True |
|
) |
|
logger.debug("Gr谩fico mostrado exitosamente") |
|
|
|
except Exception as img_error: |
|
logger.error(f"Error procesando gr谩fico: {str(img_error)}") |
|
st.error(t.get('error_loading_graph', 'Error al cargar el gr谩fico')) |
|
else: |
|
st.info(t.get('no_graph', 'No hay visualizaci贸n disponible')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error procesando an谩lisis individual: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando an谩lisis sem谩ntico: {str(e)}") |
|
st.error(t.get('error_semantic', 'Error al mostrar an谩lisis sem谩ntico')) |
|
|
|
|
|
|
|
def display_discourse_activities(username: str, t: dict): |
|
"""Muestra actividades de an谩lisis del discurso""" |
|
try: |
|
logger.info(f"Recuperando an谩lisis del discurso para {username}") |
|
analyses = get_student_discourse_analysis(username) |
|
|
|
if not analyses: |
|
logger.info("No se encontraron an谩lisis del discurso") |
|
st.info(t.get('no_discourse_analyses', 'No hay an谩lisis del discurso registrados')) |
|
return |
|
|
|
logger.info(f"Procesando {len(analyses)} an谩lisis del discurso") |
|
for analysis in analyses: |
|
try: |
|
|
|
if not all(key in analysis for key in ['timestamp', 'combined_graph']): |
|
logger.warning(f"An谩lisis incompleto: {analysis.keys()}") |
|
continue |
|
|
|
|
|
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) |
|
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") |
|
|
|
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): |
|
if analysis['combined_graph']: |
|
logger.debug("Decodificando gr谩fico combinado") |
|
try: |
|
image_bytes = base64.b64decode(analysis['combined_graph']) |
|
st.image(image_bytes, use_column_width=True) |
|
logger.debug("Gr谩fico mostrado exitosamente") |
|
except Exception as img_error: |
|
logger.error(f"Error decodificando imagen: {str(img_error)}") |
|
st.error(t.get('error_loading_graph', 'Error al cargar el gr谩fico')) |
|
else: |
|
st.info(t.get('no_visualization', 'No hay visualizaci贸n comparativa disponible')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error procesando an谩lisis individual: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando an谩lisis del discurso: {str(e)}") |
|
st.error(t.get('error_discourse', 'Error al mostrar an谩lisis del discurso')) |
|
|
|
|
|
|
|
|
|
def display_current_situation_activities(username: str, t: dict): |
|
"""Muestra actividades de an谩lisis de situaci贸n actual con recomendaciones de Claude""" |
|
try: |
|
logger.info(f"Recuperando an谩lisis de situaci贸n actual para {username}") |
|
analyses = get_current_situation_analysis(username) |
|
|
|
if not analyses: |
|
logger.info("No se encontraron an谩lisis de situaci贸n actual") |
|
st.info(t.get('no_current_situation', 'No hay an谩lisis de situaci贸n actual registrados')) |
|
return |
|
|
|
logger.info(f"Procesando {len(analyses)} an谩lisis de situaci贸n actual") |
|
|
|
for analysis in analyses: |
|
try: |
|
|
|
if not all(key in analysis for key in ['timestamp', 'feedback']): |
|
logger.warning(f"An谩lisis incompleto: {analysis.keys()}") |
|
continue |
|
|
|
|
|
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) |
|
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") |
|
|
|
|
|
title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}" |
|
if 'text_type' in analysis: |
|
text_type_display = { |
|
'academic_article': t.get('academic_article', 'Art铆culo acad茅mico'), |
|
'university_work': t.get('university_work', 'Trabajo universitario'), |
|
'general_communication': t.get('general_communication', 'Comunicaci贸n general') |
|
}.get(analysis['text_type'], analysis['text_type']) |
|
title += f" - {text_type_display}" |
|
|
|
with st.expander(title, expanded=False): |
|
|
|
st.subheader(t.get('analyzed_text', 'Texto analizado')) |
|
st.text_area( |
|
"", |
|
value=analysis.get('text', ''), |
|
height=100, |
|
disabled=True, |
|
label_visibility="collapsed" |
|
) |
|
|
|
|
|
st.subheader(t.get('recommendations', 'Recomendaciones')) |
|
|
|
|
|
st.markdown(f""" |
|
<div style="padding: 20px; border-radius: 10px; |
|
background-color: #f8f9fa; margin-bottom: 20px;"> |
|
{analysis['feedback']} |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
if 'metrics' in analysis and analysis['metrics']: |
|
with st.expander(t.get('metrics_details', 'Detalles de m茅tricas')): |
|
|
|
metrics_df = pd.DataFrame([ |
|
{"M茅trica": k, "Valor": v} |
|
for k, v in analysis['metrics'].items() |
|
if k not in ['test_type', 'timestamp'] and not isinstance(v, dict) |
|
]) |
|
st.dataframe(metrics_df, use_container_width=True) |
|
|
|
except Exception as e: |
|
logger.error(f"Error procesando an谩lisis individual de situaci贸n actual: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando an谩lisis de situaci贸n actual: {str(e)}") |
|
st.error(t.get('error_current_situation', 'Error al mostrar an谩lisis de situaci贸n actual')) |
|
|
|
|
|
|
|
def display_discourse_comparison(analysis: dict, t: dict): |
|
"""Muestra la comparaci贸n de an谩lisis del discurso""" |
|
st.subheader(t.get('comparison_results', 'Resultados de la comparaci贸n')) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") |
|
df1 = pd.DataFrame(analysis['key_concepts1']) |
|
st.dataframe(df1) |
|
|
|
with col2: |
|
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") |
|
df2 = pd.DataFrame(analysis['key_concepts2']) |
|
st.dataframe(df2) |
|
|
|
|
|
def display_chat_activities(username: str, t: dict): |
|
""" |
|
Muestra historial de conversaciones del chat |
|
""" |
|
try: |
|
|
|
chat_history = get_chat_history( |
|
username=username, |
|
analysis_type='sidebar', |
|
limit=50 |
|
) |
|
|
|
if not chat_history: |
|
st.info(t.get('no_chat_history', 'No hay conversaciones registradas')) |
|
return |
|
|
|
for chat in reversed(chat_history): |
|
try: |
|
|
|
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00')) |
|
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") |
|
|
|
with st.expander( |
|
f"{t.get('chat_date', 'Fecha de conversaci贸n')}: {formatted_date}", |
|
expanded=False |
|
): |
|
if 'messages' in chat and chat['messages']: |
|
|
|
for message in chat['messages']: |
|
role = message.get('role', 'unknown') |
|
content = message.get('content', '') |
|
|
|
|
|
with st.chat_message(role): |
|
st.markdown(content) |
|
|
|
|
|
st.divider() |
|
else: |
|
st.warning(t.get('invalid_chat_format', 'Formato de chat no v谩lido')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando conversaci贸n: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando historial del chat: {str(e)}") |
|
st.error(t.get('error_chat', 'Error al mostrar historial del chat')) |
|
|
|
|
|
|
|
def display_current_situation_activities(username: str, t: dict): |
|
"""Muestra actividades de an谩lisis de situaci贸n actual con recomendaciones de Claude""" |
|
try: |
|
logger.info(f"Recuperando recomendaciones de Claude para {username}") |
|
recommendations = get_claude_recommendations(username) |
|
|
|
if not recommendations: |
|
logger.info("No se encontraron recomendaciones de Claude") |
|
st.info(t.get('no_recommendations', 'No hay recomendaciones de Claude registradas')) |
|
return |
|
|
|
logger.info(f"Procesando {len(recommendations)} recomendaciones de Claude") |
|
|
|
for recommendation in recommendations: |
|
try: |
|
|
|
if not all(key in recommendation for key in ['timestamp', 'feedback']): |
|
logger.warning(f"Recomendaci贸n incompleta: {recommendation.keys()}") |
|
continue |
|
|
|
|
|
timestamp = datetime.fromisoformat(recommendation['timestamp'].replace('Z', '+00:00')) |
|
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") |
|
|
|
|
|
title = f"{t.get('recommendation_date', 'Fecha')}: {formatted_date}" |
|
if 'text_type' in recommendation: |
|
text_type_display = { |
|
'academic_article': t.get('academic_article', 'Art铆culo acad茅mico'), |
|
'university_work': t.get('university_work', 'Trabajo universitario'), |
|
'general_communication': t.get('general_communication', 'Comunicaci贸n general') |
|
}.get(recommendation['text_type'], recommendation['text_type']) |
|
title += f" - {text_type_display}" |
|
|
|
with st.expander(title, expanded=False): |
|
|
|
st.subheader(t.get('analyzed_text', 'Texto analizado')) |
|
st.text_area( |
|
"", |
|
value=recommendation.get('text', ''), |
|
height=100, |
|
disabled=True, |
|
label_visibility="collapsed" |
|
) |
|
|
|
|
|
st.subheader(t.get('recommendations', 'Recomendaciones de Claude')) |
|
|
|
|
|
st.markdown(f""" |
|
<div style="padding: 20px; border-radius: 10px; |
|
background-color: #f8f9fa; margin-bottom: 20px;"> |
|
{recommendation.get('feedback', 'No hay recomendaciones disponibles')} |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
if 'metrics' in recommendation and recommendation['metrics']: |
|
with st.expander(t.get('metrics_details', 'Detalles de m茅tricas')): |
|
|
|
metrics_data = [] |
|
for key, value in recommendation['metrics'].items(): |
|
if not isinstance(value, dict) and key not in ['test_type', 'timestamp']: |
|
metrics_data.append({"M茅trica": key, "Valor": value}) |
|
|
|
if metrics_data: |
|
metrics_df = pd.DataFrame(metrics_data) |
|
st.dataframe(metrics_df, use_container_width=True) |
|
else: |
|
st.info(t.get('no_metrics', 'No hay m茅tricas disponibles')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error procesando recomendaci贸n individual: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando recomendaciones de Claude: {str(e)}") |
|
st.error(t.get('error_recommendations', 'Error al mostrar recomendaciones de Claude')) |
|
|