|
|
|
|
|
import streamlit as st |
|
import logging |
|
from ..utils.widget_utils import generate_unique_key |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from ..database.current_situation_mongo_db import store_current_situation_result |
|
|
|
|
|
from translations import get_translations |
|
|
|
|
|
try: |
|
from .claude_recommendations import display_personalized_recommendations |
|
except ImportError: |
|
|
|
def display_personalized_recommendations(text, metrics, text_type, lang_code, t): |
|
st.warning("Módulo de recomendaciones personalizadas no disponible. Por favor, contacte al administrador.") |
|
|
|
from .current_situation_analysis import ( |
|
analyze_text_dimensions, |
|
analyze_clarity, |
|
analyze_vocabulary_diversity, |
|
analyze_cohesion, |
|
analyze_structure, |
|
get_dependency_depths, |
|
normalize_score, |
|
generate_sentence_graphs, |
|
generate_word_connections, |
|
generate_connection_paths, |
|
create_vocabulary_network, |
|
create_syntax_complexity_graph, |
|
create_cohesion_heatmap |
|
) |
|
|
|
|
|
plt.rcParams['font.family'] = 'sans-serif' |
|
plt.rcParams['axes.grid'] = True |
|
plt.rcParams['axes.spines.top'] = False |
|
plt.rcParams['axes.spines.right'] = False |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
TEXT_TYPES = { |
|
'academic_article': { |
|
'name': 'Artículo Académico', |
|
'thresholds': { |
|
'vocabulary': {'min': 0.70, 'target': 0.85}, |
|
'structure': {'min': 0.75, 'target': 0.90}, |
|
'cohesion': {'min': 0.65, 'target': 0.80}, |
|
'clarity': {'min': 0.70, 'target': 0.85} |
|
} |
|
}, |
|
'student_essay': { |
|
'name': 'Trabajo Universitario', |
|
'thresholds': { |
|
'vocabulary': {'min': 0.60, 'target': 0.75}, |
|
'structure': {'min': 0.65, 'target': 0.80}, |
|
'cohesion': {'min': 0.55, 'target': 0.70}, |
|
'clarity': {'min': 0.60, 'target': 0.75} |
|
} |
|
}, |
|
'general_communication': { |
|
'name': 'Comunicación General', |
|
'thresholds': { |
|
'vocabulary': {'min': 0.50, 'target': 0.65}, |
|
'structure': {'min': 0.55, 'target': 0.70}, |
|
'cohesion': {'min': 0.45, 'target': 0.60}, |
|
'clarity': {'min': 0.50, 'target': 0.65} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
def generate_recommendations(metrics, text_type, lang_code): |
|
""" |
|
Genera recomendaciones básicas basadas en las métricas y el tipo de texto. |
|
Este es un generador de recomendaciones básico que puede ser reemplazado |
|
por una versión más avanzada que use la API de Claude. |
|
""" |
|
try: |
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds'] |
|
|
|
|
|
areas = ['vocabulary', 'structure', 'cohesion', 'clarity'] |
|
scores = {area: metrics[area]['normalized_score'] for area in areas} |
|
weak_areas = sorted(areas, key=lambda x: scores[x]) |
|
|
|
|
|
priority_area = weak_areas[0] |
|
|
|
|
|
recommendations = { |
|
'priority': { |
|
'area': priority_area, |
|
'tips': ["Despliega el asistente virtual (potenciado por Claude.AI) que se ubica en la parte superior izquierda, presiona la flecha del lado del logo."] |
|
}, |
|
'vocabulary': [ |
|
"Utiliza un vocabulario más variado y específico.", |
|
"Evita repetir palabras, usa sinónimos.", |
|
"Incorpora términos técnicos apropiados para tu disciplina." |
|
], |
|
'structure': [ |
|
"Varía la estructura de tus oraciones.", |
|
"Usa tanto oraciones simples como complejas.", |
|
"Organiza tus ideas en párrafos con una estructura clara." |
|
], |
|
'cohesion': [ |
|
"Utiliza conectores y marcadores textuales.", |
|
"Asegura la progresión lógica entre ideas.", |
|
"Mantén la coherencia temática a lo largo del texto." |
|
], |
|
'clarity': [ |
|
"Evita frases excesivamente largas o complejas.", |
|
"Define términos técnicos cuando sea necesario.", |
|
"Revisa que cada párrafo desarrolle una idea principal." |
|
], |
|
'text_type': text_type |
|
} |
|
|
|
return recommendations |
|
except Exception as e: |
|
logger.error(f"Error en generate_recommendations: {str(e)}") |
|
|
|
return { |
|
'priority': { |
|
'area': 'clarity', |
|
'tips': ["Revisa tu texto para mejorar su claridad y estructura."] |
|
}, |
|
'text_type': text_type |
|
} |
|
|
|
|
|
def display_recommendations_with_actions(recommendations, lang_code, t): |
|
""" |
|
Muestra recomendaciones personalizadas para mejorar el texto. |
|
Esta función puede ser reemplazada por display_personalized_recommendations |
|
cuando se implemente la integración con Claude API. |
|
""" |
|
try: |
|
|
|
colors = { |
|
'vocabulary': '#2E86C1', |
|
'structure': '#28B463', |
|
'cohesion': '#F39C12', |
|
'clarity': '#9B59B6', |
|
'priority': '#E74C3C' |
|
} |
|
|
|
|
|
icons = { |
|
'vocabulary': '📚', |
|
'structure': '🏗️', |
|
'cohesion': '🔄', |
|
'clarity': '💡', |
|
'priority': '⭐' |
|
} |
|
|
|
|
|
dimension_names = { |
|
'vocabulary': t.get('SITUATION_ANALYSIS', {}).get('vocabulary', "Vocabulario"), |
|
'structure': t.get('SITUATION_ANALYSIS', {}).get('structure', "Estructura"), |
|
'cohesion': t.get('SITUATION_ANALYSIS', {}).get('cohesion', "Cohesión"), |
|
'clarity': t.get('SITUATION_ANALYSIS', {}).get('clarity', "Claridad"), |
|
'priority': t.get('SITUATION_ANALYSIS', {}).get('priority', "Prioridad") |
|
} |
|
|
|
|
|
priority_focus = t.get('SITUATION_ANALYSIS', {}).get('priority_focus', 'Área prioritaria para mejorar') |
|
st.markdown(f"### {icons['priority']} {priority_focus}") |
|
|
|
|
|
priority_area = recommendations.get('priority', {}).get('area', 'vocabulary') |
|
priority_title = dimension_names.get(priority_area, "Área prioritaria") |
|
|
|
|
|
priority_content = recommendations.get('priority', {}).get('tips', []) |
|
if isinstance(priority_content, list): |
|
priority_content = "<br>".join([f"• {tip}" for tip in priority_content]) |
|
|
|
|
|
with st.container(): |
|
st.markdown( |
|
f""" |
|
<div style="border:2px solid {colors['priority']}; border-radius:5px; padding:15px; margin-bottom:20px;"> |
|
<h4 style="color:{colors['priority']};">{priority_title}</h4> |
|
<p>{priority_content}</p> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
categories = ['vocabulary', 'structure', 'cohesion', 'clarity'] |
|
for i, category in enumerate(categories): |
|
|
|
if category == priority_area: |
|
continue |
|
|
|
|
|
category_content = recommendations.get(category, []) |
|
if isinstance(category_content, list): |
|
category_content = "<br>".join([f"• {tip}" for tip in category_content]) |
|
|
|
category_title = dimension_names.get(category, category) |
|
|
|
|
|
with col1 if i % 2 == 0 else col2: |
|
|
|
st.markdown( |
|
f""" |
|
<div style="border:1px solid {colors[category]}; border-radius:5px; padding:10px; margin-bottom:15px;"> |
|
<h4 style="color:{colors[category]};">{icons[category]} {category_title}</h4> |
|
<p>{category_content}</p> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
st.markdown("---") |
|
st.markdown("### 📖 Recursos adicionales") |
|
|
|
with st.expander("Ver recursos de aprendizaje"): |
|
st.markdown(""" |
|
### Recursos por área |
|
|
|
#### Vocabulario |
|
- **Diccionario de la Real Academia Española**: [www.rae.es](https://www.rae.es) |
|
- **Fundación del Español Urgente**: [www.fundeu.es](https://www.fundeu.es) |
|
|
|
#### Estructura |
|
- **Manual de gramática**: [Gramática y ortografía para dummies](https://www.planetadelibros.com/libro-gramatica-y-ortografia-para-dummies/248265) |
|
- **Ortografía de la RAE**: [Ortografía básica de la lengua española](https://www.rae.es/obras-academicas/ortografia/ortografia-basica-de-la-lengua-espanola) |
|
|
|
#### Cohesión |
|
- **Centro Virtual Cervantes**: [Diccionario de términos clave de ELE](https://cvc.cervantes.es/ensenanza/biblioteca_ele/diccio_ele/indice.htm) |
|
- **Curso de cohesión textual**: [Centro de Escritura Javeriano](https://www2.javerianacali.edu.co/sites/ujc/files/normas_apa_revisada_y_actualizada_mayo_2019.pdf) |
|
|
|
#### Claridad |
|
- **Curso de escritura científica**: [Cómo escribir y publicar trabajos científicos](https://www.conacyt.gov.py/sites/default/files/upload_editores/u38/CONI-NOR-113.pdf) |
|
- **Manual de estilo**: [Manual de estilo de la lengua española](https://www.planetadelibros.com/libro-manual-de-estilo-de-la-lengua-espanola/17811) |
|
""") |
|
|
|
|
|
with st.expander("📬 Actualizaciones de AIdeaText"): |
|
st.markdown(""" |
|
## Próximas actualizaciones |
|
|
|
- **Nueva funcionalidad**: Análisis comparativo entre textos propios |
|
- **Mejora**: Recomendaciones más detalladas y personalizadas |
|
- **Próximamente**: Tutorial interactivo para mejorar la escritura |
|
|
|
> Estamos trabajando continuamente para mejorar tus herramientas de escritura. |
|
""") |
|
except Exception as e: |
|
logger.error(f"Error mostrando recomendaciones: {str(e)}") |
|
st.error("Error al mostrar las recomendaciones") |
|
|
|
def display_current_situation_interface(lang_code, nlp_models, t): |
|
""" |
|
Interfaz simplificada con gráfico de radar para visualizar métricas. |
|
""" |
|
|
|
if 'text_input' not in st.session_state: |
|
st.session_state.text_input = "" |
|
if 'text_area' not in st.session_state: |
|
st.session_state.text_area = "" |
|
if 'show_results' not in st.session_state: |
|
st.session_state.show_results = False |
|
if 'current_doc' not in st.session_state: |
|
st.session_state.current_doc = None |
|
if 'current_metrics' not in st.session_state: |
|
st.session_state.current_metrics = None |
|
if 'current_recommendations' not in st.session_state: |
|
st.session_state.current_recommendations = None |
|
|
|
try: |
|
|
|
with st.container(): |
|
input_col, results_col = st.columns([1,2]) |
|
|
|
with input_col: |
|
|
|
text_input = st.text_area( |
|
t.get('input_prompt', "Escribe o pega tu texto aquí:"), |
|
height=400, |
|
key="text_area", |
|
value=st.session_state.text_input, |
|
help="Este texto será analizado para darte recomendaciones personalizadas" |
|
) |
|
|
|
|
|
if text_input != st.session_state.text_input: |
|
st.session_state.text_input = text_input |
|
st.session_state.show_results = False |
|
|
|
if st.button( |
|
t.get('analyze_button', "Analizar mi escritura"), |
|
type="primary", |
|
disabled=not text_input.strip(), |
|
use_container_width=True, |
|
): |
|
try: |
|
with st.spinner(t.get('processing', "Analizando...")): |
|
doc = nlp_models[lang_code](text_input) |
|
metrics = analyze_text_dimensions(doc) |
|
|
|
storage_success = store_current_situation_result( |
|
username=st.session_state.username, |
|
text=text_input, |
|
metrics=metrics, |
|
feedback=None |
|
) |
|
|
|
if not storage_success: |
|
logger.warning("No se pudo guardar el análisis en la base de datos") |
|
|
|
st.session_state.current_doc = doc |
|
st.session_state.current_metrics = metrics |
|
st.session_state.show_results = True |
|
|
|
except Exception as e: |
|
logger.error(f"Error en análisis: {str(e)}") |
|
st.error(t.get('analysis_error', "Error al analizar el texto")) |
|
|
|
|
|
with results_col: |
|
if st.session_state.show_results and st.session_state.current_metrics is not None: |
|
|
|
st.markdown("### Tipo de texto") |
|
text_type = st.radio( |
|
label="Tipo de texto", |
|
options=list(TEXT_TYPES.keys()), |
|
format_func=lambda x: TEXT_TYPES[x]['name'], |
|
horizontal=True, |
|
key="text_type_radio", |
|
label_visibility="collapsed", |
|
help="Selecciona el tipo de texto para ajustar los criterios de evaluación" |
|
) |
|
|
|
st.session_state.current_text_type = text_type |
|
|
|
|
|
subtab1, subtab2 = st.tabs(["Diagnóstico", "Recomendaciones"]) |
|
|
|
|
|
with subtab1: |
|
display_diagnosis( |
|
metrics=st.session_state.current_metrics, |
|
text_type=text_type |
|
) |
|
|
|
|
|
with subtab2: |
|
|
|
if (st.session_state.current_recommendations is None or |
|
st.session_state.current_recommendations.get('text_type') != text_type): |
|
|
|
recommendations = generate_recommendations( |
|
metrics=st.session_state.current_metrics, |
|
text_type=text_type, |
|
lang_code=lang_code |
|
) |
|
recommendations['text_type'] = text_type |
|
st.session_state.current_recommendations = recommendations |
|
|
|
|
|
try: |
|
|
|
display_personalized_recommendations( |
|
text=text_input, |
|
metrics=st.session_state.current_metrics, |
|
text_type=text_type, |
|
lang_code=lang_code, |
|
t=t |
|
) |
|
except (NameError, ImportError): |
|
|
|
display_recommendations_with_actions( |
|
st.session_state.current_recommendations, |
|
lang_code, |
|
t |
|
) |
|
|
|
except Exception as e: |
|
logger.error(f"Error en interfaz principal: {str(e)}") |
|
st.error("Ocurrió un error al cargar la interfaz") |
|
|
|
def display_diagnosis(metrics, text_type=None): |
|
""" |
|
Muestra los resultados del análisis: métricas verticalmente y gráfico radar. |
|
""" |
|
try: |
|
|
|
text_type = text_type or 'student_essay' |
|
|
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds'] |
|
|
|
|
|
metrics_col, graph_col = st.columns([1, 1.5]) |
|
|
|
|
|
with metrics_col: |
|
metrics_config = [ |
|
{ |
|
'label': "Vocabulario", |
|
'key': 'vocabulary', |
|
'value': metrics['vocabulary']['normalized_score'], |
|
'help': "Riqueza y variedad del vocabulario", |
|
'thresholds': thresholds['vocabulary'] |
|
}, |
|
{ |
|
'label': "Estructura", |
|
'key': 'structure', |
|
'value': metrics['structure']['normalized_score'], |
|
'help': "Organización y complejidad de oraciones", |
|
'thresholds': thresholds['structure'] |
|
}, |
|
{ |
|
'label': "Cohesión", |
|
'key': 'cohesion', |
|
'value': metrics['cohesion']['normalized_score'], |
|
'help': "Conexión y fluidez entre ideas", |
|
'thresholds': thresholds['cohesion'] |
|
}, |
|
{ |
|
'label': "Claridad", |
|
'key': 'clarity', |
|
'value': metrics['clarity']['normalized_score'], |
|
'help': "Facilidad de comprensión del texto", |
|
'thresholds': thresholds['clarity'] |
|
} |
|
] |
|
|
|
|
|
for metric in metrics_config: |
|
value = metric['value'] |
|
if value < metric['thresholds']['min']: |
|
status = "⚠️ Por mejorar" |
|
color = "inverse" |
|
elif value < metric['thresholds']['target']: |
|
status = "📈 Aceptable" |
|
color = "off" |
|
else: |
|
status = "✅ Óptimo" |
|
color = "normal" |
|
|
|
st.metric( |
|
metric['label'], |
|
f"{value:.2f}", |
|
f"{status} (Meta: {metric['thresholds']['target']:.2f})", |
|
delta_color=color, |
|
help=metric['help'] |
|
) |
|
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) |
|
|
|
|
|
with graph_col: |
|
display_radar_chart(metrics_config, thresholds) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando resultados: {str(e)}") |
|
st.error("Error al mostrar los resultados") |
|
|
|
|
|
def display_radar_chart(metrics_config, thresholds): |
|
""" |
|
Muestra el gráfico radar con los resultados. |
|
""" |
|
try: |
|
|
|
categories = [m['label'] for m in metrics_config] |
|
values_user = [m['value'] for m in metrics_config] |
|
min_values = [m['thresholds']['min'] for m in metrics_config] |
|
target_values = [m['thresholds']['target'] for m in metrics_config] |
|
|
|
|
|
fig = plt.figure(figsize=(8, 8)) |
|
ax = fig.add_subplot(111, projection='polar') |
|
|
|
|
|
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] |
|
angles += angles[:1] |
|
values_user += values_user[:1] |
|
min_values += min_values[:1] |
|
target_values += target_values[:1] |
|
|
|
|
|
ax.set_xticks(angles[:-1]) |
|
ax.set_xticklabels(categories, fontsize=10) |
|
circle_ticks = np.arange(0, 1.1, 0.2) |
|
ax.set_yticks(circle_ticks) |
|
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) |
|
ax.set_ylim(0, 1) |
|
|
|
|
|
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5) |
|
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5) |
|
ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1) |
|
ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1) |
|
|
|
|
|
ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura') |
|
ax.fill(angles, values_user, '#3498db', alpha=0.2) |
|
|
|
|
|
ax.legend( |
|
loc='upper right', |
|
bbox_to_anchor=(1.3, 1.1), |
|
fontsize=10, |
|
frameon=True, |
|
facecolor='white', |
|
edgecolor='none', |
|
shadow=True |
|
) |
|
|
|
plt.tight_layout() |
|
st.pyplot(fig) |
|
plt.close() |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando gráfico radar: {str(e)}") |
|
st.error("Error al mostrar el gráfico") |