|
|
|
import streamlit as st |
|
import spacy_streamlit |
|
from streamlit_float import * |
|
from streamlit_antd_components import * |
|
from streamlit.components.v1 import html |
|
import base64 |
|
|
|
|
|
from .morphosyntax_process import ( |
|
process_morphosyntactic_input, |
|
format_analysis_results, |
|
perform_advanced_morphosyntactic_analysis, |
|
get_repeated_words_colors, |
|
highlight_repeated_words, |
|
POS_COLORS, |
|
POS_TRANSLATIONS |
|
) |
|
|
|
from ..utils.widget_utils import generate_unique_key |
|
|
|
|
|
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result |
|
from ..database.chat_db import store_chat_history |
|
from ..database.morphosintaxis_export import export_user_interactions |
|
|
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
def display_morphosyntax_interface(lang_code, nlp_models, t): |
|
""" |
|
Interfaz para el análisis morfosintáctico |
|
Args: |
|
lang_code: Código del idioma actual |
|
nlp_models: Modelos de spaCy cargados |
|
t: Diccionario de traducciones |
|
""" |
|
|
|
morpho_t = t.get('MORPHOSYNTACTIC', {}) |
|
|
|
|
|
input_key = f"morphosyntax_input_{lang_code}" |
|
if input_key not in st.session_state: |
|
st.session_state[input_key] = "" |
|
|
|
|
|
sentence_input = st.text_area( |
|
morpho_t.get('morpho_input_label', 'Enter text to analyze'), |
|
height=150, |
|
placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'), |
|
value=st.session_state[input_key], |
|
key=f"text_area_{lang_code}", |
|
on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"]) |
|
) |
|
|
|
|
|
if st.button(morpho_t.get('analyze_button', 'Analyze text'), key=f"analyze_button_{lang_code}"): |
|
current_input = st.session_state[input_key] |
|
if current_input: |
|
try: |
|
|
|
doc = nlp_models[lang_code](current_input) |
|
|
|
|
|
advanced_analysis = perform_advanced_morphosyntactic_analysis( |
|
current_input, |
|
nlp_models[lang_code] |
|
) |
|
|
|
|
|
st.session_state.morphosyntax_result = { |
|
'doc': doc, |
|
'advanced_analysis': advanced_analysis |
|
} |
|
|
|
|
|
display_morphosyntax_results( |
|
st.session_state.morphosyntax_result, |
|
lang_code, |
|
morpho_t |
|
) |
|
|
|
|
|
if store_morphosyntax_result( |
|
st.session_state.username, |
|
current_input, |
|
get_repeated_words_colors(doc), |
|
advanced_analysis['arc_diagram'], |
|
advanced_analysis['pos_analysis'], |
|
advanced_analysis['morphological_analysis'], |
|
advanced_analysis['sentence_structure'] |
|
): |
|
st.success(morpho_t.get('success_message', 'Analysis saved successfully')) |
|
else: |
|
st.error(morpho_t.get('error_message', 'Error saving analysis')) |
|
|
|
except Exception as e: |
|
st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}')) |
|
else: |
|
st.warning(morpho_t.get('warning_message', 'Please enter a text to analyze')) |
|
|
|
|
|
elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None: |
|
display_morphosyntax_results( |
|
st.session_state.morphosyntax_result, |
|
lang_code, |
|
morpho_t |
|
) |
|
else: |
|
st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis')) |
|
|
|
def display_morphosyntax_results(result, lang_code, t): |
|
if result is None: |
|
st.warning(t['no_results']) |
|
return |
|
|
|
doc = result['doc'] |
|
advanced_analysis = result['advanced_analysis'] |
|
|
|
|
|
st.markdown(f"##### {t['legend']}") |
|
legend_html = "<div style='display: flex; flex-wrap: wrap;'>" |
|
for pos, color in POS_COLORS.items(): |
|
if pos in POS_TRANSLATIONS[lang_code]: |
|
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>" |
|
legend_html += "</div>" |
|
st.markdown(legend_html, unsafe_allow_html=True) |
|
|
|
|
|
word_colors = get_repeated_words_colors(doc) |
|
with st.expander(t['repeated_words'], expanded=True): |
|
highlighted_text = highlight_repeated_words(doc, word_colors) |
|
st.markdown(highlighted_text, unsafe_allow_html=True) |
|
|
|
|
|
with st.expander(t['sentence_structure'], expanded=True): |
|
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): |
|
sentence_str = ( |
|
f"**{t['sentence']} {i+1}** " |
|
f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " |
|
f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- " |
|
f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- " |
|
f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}" |
|
) |
|
st.markdown(sentence_str) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
with st.expander(t['pos_analysis'], expanded=True): |
|
pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) |
|
|
|
|
|
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) |
|
|
|
|
|
pos_df = pos_df.rename(columns={ |
|
'pos': t['grammatical_category'], |
|
'count': t['count'], |
|
'percentage': t['percentage'], |
|
'examples': t['examples'] |
|
}) |
|
|
|
|
|
st.dataframe(pos_df) |
|
|
|
with col2: |
|
with st.expander(t['morphological_analysis'], expanded=True): |
|
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) |
|
|
|
|
|
column_mapping = { |
|
'text': t['word'], |
|
'lemma': t['lemma'], |
|
'pos': t['grammatical_category'], |
|
'dep': t['dependency'], |
|
'morph': t['morphology'] |
|
} |
|
|
|
|
|
morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns}) |
|
|
|
|
|
morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) |
|
|
|
|
|
dep_translations = { |
|
'es': { |
|
'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', |
|
'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', |
|
'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', |
|
'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', |
|
'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', |
|
'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', |
|
'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', |
|
'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', |
|
'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', |
|
'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' |
|
}, |
|
'en': { |
|
'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', |
|
'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', |
|
'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', |
|
'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', |
|
'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', |
|
'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', |
|
'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', |
|
'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', |
|
'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' |
|
}, |
|
'fr': { |
|
'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', |
|
'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', |
|
'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', |
|
'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', |
|
'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', |
|
'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', |
|
'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', |
|
'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' |
|
} |
|
} |
|
morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x)) |
|
|
|
|
|
def translate_morph(morph_string, lang_code): |
|
morph_translations = { |
|
'es': { |
|
'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', |
|
'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', |
|
'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', |
|
'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', |
|
'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', |
|
'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', |
|
'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' |
|
}, |
|
'en': { |
|
'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', |
|
'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', |
|
'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', |
|
'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', |
|
'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' |
|
}, |
|
'fr': { |
|
'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', |
|
'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', |
|
'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', |
|
'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', |
|
'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' |
|
} |
|
} |
|
for key, value in morph_translations[lang_code].items(): |
|
morph_string = morph_string.replace(key, value) |
|
return morph_string |
|
|
|
morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code)) |
|
|
|
|
|
columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']] |
|
columns_to_display = [col for col in columns_to_display if col in morph_df.columns] |
|
|
|
|
|
st.dataframe(morph_df[columns_to_display]) |
|
|
|
|
|
with st.expander(t['arc_diagram'], expanded=True): |
|
sentences = list(doc.sents) |
|
arc_diagrams = [] |
|
for i, sent in enumerate(sentences): |
|
st.subheader(f"{t['sentence']} {i+1}") |
|
html = displacy.render(sent, style="dep", options={"distance": 100}) |
|
html = html.replace('height="375"', 'height="200"') |
|
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) |
|
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html) |
|
st.write(html, unsafe_allow_html=True) |
|
arc_diagrams.append(html) |
|
|
|
|
|
|
|
if st.button(morpho_t.get('export_button', 'Export Analysis')): |
|
pdf_buffer = export_user_interactions(st.session_state.username, 'morphosyntax') |
|
st.download_button( |
|
label=morpho_t.get('download_pdf', 'Download PDF'), |
|
data=pdf_buffer, |
|
file_name="morphosyntax_analysis.pdf", |
|
mime="application/pdf" |
|
) |
|
|
|
''' |
|
if user_input: |
|
# Añadir el mensaje del usuario al historial |
|
st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) |
|
|
|
# Procesar el input del usuario nuevo al 26-9-2024 |
|
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) |
|
|
|
# Mostrar indicador de carga |
|
with st.spinner(t.get('processing', 'Processing...')): |
|
try: |
|
# Procesar el input del usuario |
|
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) |
|
|
|
# Añadir la respuesta al historial |
|
message = { |
|
"role": "assistant", |
|
"content": response |
|
} |
|
if visualizations: |
|
message["visualizations"] = visualizations |
|
st.session_state.morphosyntax_chat_history.append(message) |
|
|
|
# Mostrar la respuesta más reciente |
|
with st.chat_message("assistant"): |
|
st.write(response) |
|
if visualizations: |
|
for i, viz in enumerate(visualizations): |
|
st.markdown(f"**Oración {i+1} del párrafo analizado**") |
|
st.components.v1.html( |
|
f""" |
|
<div style="width: 100%; overflow-x: auto; white-space: nowrap;"> |
|
<div style="min-width: 1200px;"> |
|
{viz} |
|
</div> |
|
</div> |
|
""", |
|
height=350, |
|
scrolling=True |
|
) |
|
if i < len(visualizations) - 1: |
|
st.markdown("---") # Separador entre diagramas |
|
|
|
# Si es un análisis, guardarlo en la base de datos |
|
if user_input.startswith('/analisis_morfosintactico') and result: |
|
store_morphosyntax_result( |
|
st.session_state.username, |
|
user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado |
|
result.get('repeated_words', {}), |
|
visualizations, |
|
result.get('pos_analysis', []), |
|
result.get('morphological_analysis', []), |
|
result.get('sentence_structure', []) |
|
) |
|
|
|
|
|
except Exception as e: |
|
st.error(f"{t['error_processing']}: {str(e)}") |
|
|
|
|
|
|
|
# Forzar la actualización de la interfaz |
|
st.rerun() |
|
|
|
# Botón para limpiar el historial del chat |
|
if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')): |
|
st.session_state.morphosyntax_chat_history = [] |
|
st.rerun() |
|
''' |
|
|
|
|
|
''' |
|
############ MODULO PARA DEPURACIÓN Y PRUEBAS ##################################################### |
|
def display_morphosyntax_interface(lang_code, nlp_models, t): |
|
st.subheader(t['morpho_title']) |
|
|
|
text_input = st.text_area( |
|
t['warning_message'], |
|
height=150, |
|
key=generate_unique_key("morphosyntax", "text_area") |
|
) |
|
|
|
if st.button( |
|
t['results_title'], |
|
key=generate_unique_key("morphosyntax", "analyze_button") |
|
): |
|
if text_input: |
|
# Aquí iría tu lógica de análisis morfosintáctico |
|
# Por ahora, solo mostraremos un mensaje de placeholder |
|
st.info(t['analysis_placeholder']) |
|
else: |
|
st.warning(t['no_text_warning']) |
|
### |
|
################################################# |
|
''' |
|
|