|
|
|
|
|
|
|
import streamlit as st |
|
import spacy |
|
import networkx as nx |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
import numpy as np |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
from .semantic_analysis import ( |
|
create_concept_graph, |
|
visualize_concept_graph, |
|
identify_key_concepts |
|
) |
|
|
|
from .stopwords import ( |
|
get_custom_stopwords, |
|
process_text, |
|
get_stopwords_for_spacy |
|
) |
|
|
|
|
|
|
|
POS_COLORS = { |
|
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', |
|
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', |
|
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', |
|
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', |
|
} |
|
|
|
POS_TRANSLATIONS = { |
|
'es': { |
|
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', |
|
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', |
|
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', |
|
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', |
|
'VERB': 'Verbo', 'X': 'Otro', |
|
}, |
|
'en': { |
|
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', |
|
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', |
|
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', |
|
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', |
|
'VERB': 'Verb', 'X': 'Other', |
|
}, |
|
'fr': { |
|
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', |
|
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', |
|
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', |
|
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', |
|
'VERB': 'Verbe', 'X': 'Autre', |
|
} |
|
} |
|
|
|
ENTITY_LABELS = { |
|
'es': { |
|
"Personas": "lightblue", |
|
"Lugares": "lightcoral", |
|
"Inventos": "lightgreen", |
|
"Fechas": "lightyellow", |
|
"Conceptos": "lightpink" |
|
}, |
|
'en': { |
|
"People": "lightblue", |
|
"Places": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
}, |
|
'fr': { |
|
"Personnes": "lightblue", |
|
"Lieux": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
} |
|
} |
|
|
|
|
|
|
|
def compare_semantic_analysis(text1, text2, nlp, lang): |
|
""" |
|
Realiza el análisis semántico comparativo entre dos textos |
|
""" |
|
try: |
|
logger.info(f"Iniciando análisis comparativo para idioma: {lang}") |
|
|
|
|
|
stopwords = get_custom_stopwords(lang) |
|
logger.info(f"Obtenidas {len(stopwords)} stopwords para el idioma {lang}") |
|
|
|
|
|
doc1 = nlp(text1) |
|
doc2 = nlp(text2) |
|
|
|
|
|
logger.info("Identificando conceptos clave del primer texto...") |
|
key_concepts1 = identify_key_concepts(doc1, stopwords=stopwords, min_freq=2, min_length=3) |
|
|
|
logger.info("Identificando conceptos clave del segundo texto...") |
|
key_concepts2 = identify_key_concepts(doc2, stopwords=stopwords, min_freq=2, min_length=3) |
|
|
|
if not key_concepts1 or not key_concepts2: |
|
raise ValueError("No se pudieron identificar conceptos clave en uno o ambos textos") |
|
|
|
|
|
logger.info("Creando grafos de conceptos...") |
|
G1 = create_concept_graph(doc1, key_concepts1) |
|
G2 = create_concept_graph(doc2, key_concepts2) |
|
|
|
|
|
logger.info("Visualizando grafos...") |
|
|
|
|
|
plt.figure(figsize=(12, 8)) |
|
fig1 = visualize_concept_graph(G1, lang) |
|
plt.title("Análisis del primer texto", pad=20) |
|
plt.tight_layout() |
|
|
|
|
|
plt.figure(figsize=(12, 8)) |
|
fig2 = visualize_concept_graph(G2, lang) |
|
plt.title("Análisis del segundo texto", pad=20) |
|
plt.tight_layout() |
|
|
|
logger.info("Análisis comparativo completado exitosamente") |
|
return fig1, fig2, key_concepts1, key_concepts2 |
|
|
|
except Exception as e: |
|
logger.error(f"Error en compare_semantic_analysis: {str(e)}") |
|
plt.close('all') |
|
raise |
|
finally: |
|
plt.close('all') |
|
|
|
|
|
|
|
def create_concept_table(key_concepts): |
|
""" |
|
Crea una tabla de conceptos clave con sus frecuencias |
|
Args: |
|
key_concepts: Lista de tuplas (concepto, frecuencia) |
|
Returns: |
|
pandas.DataFrame: Tabla formateada de conceptos |
|
""" |
|
try: |
|
if not key_concepts: |
|
logger.warning("Lista de conceptos vacía") |
|
return pd.DataFrame(columns=['Concepto', 'Frecuencia']) |
|
|
|
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia']) |
|
df['Frecuencia'] = df['Frecuencia'].round(2) |
|
return df |
|
except Exception as e: |
|
logger.error(f"Error en create_concept_table: {str(e)}") |
|
return pd.DataFrame(columns=['Concepto', 'Frecuencia']) |
|
|
|
|
|
|
|
def perform_discourse_analysis(text1, text2, nlp, lang): |
|
""" |
|
Realiza el análisis completo del discurso |
|
""" |
|
try: |
|
logger.info("Iniciando análisis del discurso...") |
|
|
|
|
|
if not text1 or not text2: |
|
raise ValueError("Los textos de entrada no pueden estar vacíos") |
|
|
|
if not nlp: |
|
raise ValueError("Modelo de lenguaje no inicializado") |
|
|
|
|
|
try: |
|
fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis( |
|
text1, text2, nlp, lang |
|
) |
|
except Exception as e: |
|
logger.error(f"Error en el análisis comparativo: {str(e)}") |
|
raise |
|
|
|
|
|
try: |
|
table1 = create_concept_table(key_concepts1) |
|
table2 = create_concept_table(key_concepts2) |
|
except Exception as e: |
|
logger.error(f"Error creando tablas de conceptos: {str(e)}") |
|
raise |
|
|
|
result = { |
|
'graph1': fig1, |
|
'graph2': fig2, |
|
'key_concepts1': key_concepts1, |
|
'key_concepts2': key_concepts2, |
|
'table1': table1, |
|
'table2': table2, |
|
'success': True |
|
} |
|
|
|
logger.info("Análisis del discurso completado exitosamente") |
|
return result |
|
|
|
except Exception as e: |
|
logger.error(f"Error en perform_discourse_analysis: {str(e)}") |
|
return { |
|
'success': False, |
|
'error': str(e) |
|
} |
|
finally: |
|
plt.close('all') |
|
|
|
|
|
def create_concept_table(key_concepts): |
|
""" |
|
Crea una tabla de conceptos clave con sus frecuencias |
|
Args: |
|
key_concepts: Lista de tuplas (concepto, frecuencia) |
|
Returns: |
|
pandas.DataFrame: Tabla formateada de conceptos |
|
""" |
|
try: |
|
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia']) |
|
df['Frecuencia'] = df['Frecuencia'].round(2) |
|
return df |
|
except Exception as e: |
|
logger.error(f"Error en create_concept_table: {str(e)}") |
|
raise |
|
|
|
|
|
def perform_discourse_analysis(text1, text2, nlp, lang): |
|
""" |
|
Realiza el análisis completo del discurso |
|
Args: |
|
text1: Primer texto a analizar |
|
text2: Segundo texto a analizar |
|
nlp: Modelo de spaCy cargado |
|
lang: Código de idioma |
|
Returns: |
|
dict: Resultados del análisis |
|
""" |
|
try: |
|
|
|
fig1, fig2, key_concepts1, key_concepts2 = compare_semantic_analysis( |
|
text1, text2, nlp, lang |
|
) |
|
|
|
|
|
table1 = create_concept_table(key_concepts1) |
|
table2 = create_concept_table(key_concepts2) |
|
|
|
return { |
|
'graph1': fig1, |
|
'graph2': fig2, |
|
'key_concepts1': key_concepts1, |
|
'key_concepts2': key_concepts2, |
|
'table1': table1, |
|
'table2': table2, |
|
'success': True |
|
} |
|
|
|
except Exception as e: |
|
logger.error(f"Error en perform_discourse_analysis: {str(e)}") |
|
return { |
|
'success': False, |
|
'error': str(e) |
|
} |