|
|
|
import streamlit as st
|
|
from streamlit_player import st_player
|
|
from streamlit_float import *
|
|
from streamlit_antd_components import *
|
|
from streamlit_option_menu import *
|
|
from streamlit_chat import *
|
|
import logging
|
|
import time
|
|
from datetime import datetime
|
|
import re
|
|
import io
|
|
from io import BytesIO
|
|
import base64
|
|
import matplotlib.pyplot as plt
|
|
import plotly.graph_objects as go
|
|
import pandas as pd
|
|
import numpy as np
|
|
from spacy import displacy
|
|
import random
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
from translations import get_translations
|
|
|
|
|
|
from ..studentact.student_activities_v2 import display_student_progress
|
|
|
|
|
|
from ..auth.auth import authenticate_user, register_user
|
|
|
|
|
|
from ..database.database_oldFromV2 import (
|
|
get_student_data,
|
|
store_application_request,
|
|
store_morphosyntax_result,
|
|
store_semantic_result,
|
|
store_discourse_analysis_result,
|
|
store_chat_history,
|
|
create_admin_user,
|
|
create_student_user,
|
|
store_user_feedback
|
|
)
|
|
|
|
from ..admin.admin_ui import admin_page
|
|
|
|
from ..morphosyntax.morphosyntax_interface import display_morphosyntax_interface
|
|
|
|
from ..semantic.semantic_interface_68ok import display_semantic_interface
|
|
|
|
from ..discourse.discourse_interface import display_discourse_interface
|
|
|
|
|
|
|
|
from ..semantic.semantic_float68ok import semantic_float_init
|
|
|
|
|
|
|
|
|
|
|
|
def initialize_session_state():
|
|
if 'initialized' not in st.session_state:
|
|
st.session_state.clear()
|
|
st.session_state.initialized = True
|
|
st.session_state.logged_in = False
|
|
st.session_state.page = 'login'
|
|
st.session_state.username = None
|
|
st.session_state.role = None
|
|
st.session_state.lang_code = 'es'
|
|
|
|
def main():
|
|
logger.info(f"Entrando en main() - Página actual: {st.session_state.page}")
|
|
|
|
if 'nlp_models' not in st.session_state:
|
|
st.error("Los modelos NLP no están inicializados. Por favor, reinicie la aplicación.")
|
|
return
|
|
|
|
semantic_float_init()
|
|
|
|
if st.session_state.page == 'login':
|
|
login_register_page()
|
|
elif st.session_state.page == 'admin':
|
|
logger.info("Mostrando página de admin")
|
|
admin_page()
|
|
elif st.session_state.page == 'user':
|
|
user_page()
|
|
else:
|
|
logger.warning(f"Página no reconocida: {st.session_state.page}")
|
|
st.error(f"Página no reconocida: {st.session_state.page}")
|
|
|
|
logger.info(f"Saliendo de main() - Estado final de la sesión: {st.session_state}")
|
|
|
|
|
|
|
|
def user_page():
|
|
logger.info(f"Entrando en user_page para el usuario: {st.session_state.username}")
|
|
|
|
if 'user_data' not in st.session_state or time.time() - st.session_state.get('last_data_fetch', 0) > 60:
|
|
with st.spinner("Cargando tus datos..."):
|
|
try:
|
|
st.session_state.user_data = get_student_data(st.session_state.username)
|
|
st.session_state.last_data_fetch = time.time()
|
|
except Exception as e:
|
|
logger.error(f"Error al obtener datos del usuario: {str(e)}")
|
|
st.error("Hubo un problema al cargar tus datos. Por favor, intenta recargar la página.")
|
|
return
|
|
|
|
logger.info(f"Idioma actual: {st.session_state.lang_code}")
|
|
logger.info(f"Modelos NLP cargados: {'nlp_models' in st.session_state}")
|
|
|
|
languages = {'Español': 'es', 'English': 'en', 'Français': 'fr'}
|
|
|
|
if 'lang_code' not in st.session_state:
|
|
st.session_state.lang_code = 'es'
|
|
elif not isinstance(st.session_state.lang_code, str) or st.session_state.lang_code not in ['es', 'en', 'fr']:
|
|
logger.warning(f"Invalid lang_code: {st.session_state.lang_code}. Setting to default 'es'")
|
|
st.session_state.lang_code = 'es'
|
|
|
|
|
|
t = get_translations(st.session_state.lang_code)
|
|
|
|
|
|
st.markdown("""
|
|
<style>
|
|
.stSelectbox > div > div {
|
|
padding-top: 0px;
|
|
}
|
|
.stButton > button {
|
|
padding-top: 2px;
|
|
margin-top: 0px;
|
|
}
|
|
div[data-testid="stHorizontalBlock"] > div:nth-child(3) {
|
|
display: flex;
|
|
justify-content: flex-end;
|
|
align-items: center;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
|
|
with st.container():
|
|
col1, col2, col3 = st.columns([2, 2, 1])
|
|
with col1:
|
|
st.markdown(f"<h3 style='margin-bottom: 0; padding-top: 10px;'>{t['welcome']}, {st.session_state.username}</h3>", unsafe_allow_html=True)
|
|
with col2:
|
|
selected_lang = st.selectbox(
|
|
t['select_language'],
|
|
list(languages.keys()),
|
|
index=list(languages.values()).index(st.session_state.lang_code),
|
|
key=f"language_selector_{st.session_state.username}_{st.session_state.lang_code}"
|
|
)
|
|
new_lang_code = languages[selected_lang]
|
|
if st.session_state.lang_code != new_lang_code:
|
|
st.session_state.lang_code = new_lang_code
|
|
st.rerun()
|
|
with col3:
|
|
if st.button(t['logout'], key=f"logout_button_{st.session_state.username}_{st.session_state.lang_code}"):
|
|
|
|
for key in list(st.session_state.keys()):
|
|
del st.session_state[key]
|
|
st.rerun()
|
|
|
|
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs = st.tabs([
|
|
t['morpho_tab'],
|
|
t['semantic_tab'],
|
|
t['discourse_tab'],
|
|
t['activities_tab'],
|
|
t['feedback_tab']
|
|
])
|
|
|
|
|
|
for i, (tab, func) in enumerate(zip(tabs, [
|
|
display_morphosyntax_interface,
|
|
display_semantic_interface,
|
|
display_discourse_interface,
|
|
display_student_progress,
|
|
display_feedback_form
|
|
])):
|
|
with tab:
|
|
try:
|
|
if i < 5:
|
|
func(st.session_state.lang_code, st.session_state.nlp_models, t, st.session_state.user_data)
|
|
elif i == 3:
|
|
func(st.session_state.username, st.session_state.lang_code, t, st.session_state.user_data)
|
|
else:
|
|
func(st.session_state.lang_code, t)
|
|
except Exception as e:
|
|
st.error(f"Error al cargar la pestaña: {str(e)}")
|
|
logger.error(f"Error en la pestaña {i}: {str(e)}", exc_info=True)
|
|
|
|
logger.debug(f"Translations loaded: {t}")
|
|
logger.info("Finalizada la renderización de user_page")
|
|
|
|
|
|
|
|
|
|
|
|
def login_register_page():
|
|
logger.info("Renderizando página de login/registro")
|
|
st.title("AIdeaText")
|
|
st.write("Bienvenido. Por favor, inicie sesión o regístrese.")
|
|
|
|
left_column, right_column = st.columns([1, 3])
|
|
|
|
with left_column:
|
|
tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"])
|
|
|
|
with tab1:
|
|
login_form()
|
|
|
|
with tab2:
|
|
register_form()
|
|
|
|
with right_column:
|
|
display_videos_and_info()
|
|
|
|
|
|
|
|
def login_form():
|
|
with st.form("login_form"):
|
|
username = st.text_input("Correo electrónico")
|
|
password = st.text_input("Contraseña", type="password")
|
|
submit_button = st.form_submit_button("Iniciar Sesión")
|
|
|
|
if submit_button:
|
|
success, role = authenticate_user(username, password)
|
|
if success:
|
|
st.session_state.logged_in = True
|
|
st.session_state.username = username
|
|
st.session_state.role = role
|
|
st.session_state.page = 'admin' if role == 'Administrador' else 'user'
|
|
st.rerun()
|
|
else:
|
|
st.error("Credenciales incorrectas")
|
|
|
|
|
|
|
|
def register_form():
|
|
st.header("Solicitar prueba de la aplicación")
|
|
|
|
name = st.text_input("Nombre completo")
|
|
email = st.text_input("Correo electrónico institucional")
|
|
institution = st.text_input("Institución")
|
|
role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"])
|
|
reason = st.text_area("¿Por qué estás interesado en probar AIdeaText?")
|
|
|
|
if st.button("Enviar solicitud"):
|
|
if not name or not email or not institution or not reason:
|
|
st.error("Por favor, completa todos los campos.")
|
|
elif not is_institutional_email(email):
|
|
st.error("Por favor, utiliza un correo electrónico institucional.")
|
|
else:
|
|
success = store_application_request(name, email, institution, role, reason)
|
|
if success:
|
|
st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.")
|
|
else:
|
|
st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.")
|
|
|
|
|
|
|
|
|
|
def is_institutional_email(email):
|
|
forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com']
|
|
return not any(domain in email.lower() for domain in forbidden_domains)
|
|
|
|
|
|
|
|
def display_videos_and_info():
|
|
st.header("Videos: pitch, demos, entrevistas, otros")
|
|
|
|
videos = {
|
|
"Presentación en PyCon Colombia, Medellín, 2024": "https://www.youtube.com/watch?v=Jn545-IKx5Q",
|
|
"Presentación fundación Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164",
|
|
"Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s",
|
|
"Entrevista Dr. Guillermo Ruíz": "https://www.youtube.com/watch?v=_ch8cRja3oc",
|
|
"Demo versión desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY"
|
|
}
|
|
|
|
selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys()))
|
|
|
|
if selected_title in videos:
|
|
try:
|
|
st_player(videos[selected_title])
|
|
except Exception as e:
|
|
st.error(f"Error al cargar el video: {str(e)}")
|
|
|
|
st.markdown("""
|
|
## Novedades de la versión actual
|
|
- Nueva función de análisis semántico
|
|
- Soporte para múltiples idiomas
|
|
- Interfaz mejorada para una mejor experiencia de usuario
|
|
""")
|
|
|
|
def display_feedback_form(lang_code, t):
|
|
logging.info(f"display_feedback_form called with lang_code: {lang_code}")
|
|
|
|
st.header(t['title'])
|
|
|
|
name = st.text_input(t['name'], key=f"feedback_name_{lang_code}")
|
|
email = st.text_input(t['email'], key=f"feedback_email_{lang_code}")
|
|
feedback = st.text_area(t['feedback'], key=f"feedback_text_{lang_code}")
|
|
|
|
if st.button(t['submit'], key=f"feedback_submit_{lang_code}"):
|
|
if name and email and feedback:
|
|
if store_user_feedback(st.session_state.username, name, email, feedback):
|
|
st.success(t['success'])
|
|
else:
|
|
st.error(t['error'])
|
|
else:
|
|
st.warning("Por favor, completa todos los campos.")
|
|
|
|
'''
|
|
def display_student_progress(username, lang_code, t):
|
|
student_data = get_student_data(username)
|
|
|
|
if student_data is None or len(student_data['entries']) == 0:
|
|
st.warning("No se encontraron datos para este estudiante.")
|
|
st.info("Intenta realizar algunos análisis de texto primero.")
|
|
return
|
|
|
|
st.title(f"Progreso de {username}")
|
|
|
|
with st.expander("Resumen de Actividades y Progreso", expanded=True):
|
|
# Resumen de actividades
|
|
total_entries = len(student_data['entries'])
|
|
st.write(f"Total de análisis realizados: {total_entries}")
|
|
|
|
# Gráfico de tipos de análisis
|
|
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
|
|
analysis_counts = pd.Series(analysis_types).value_counts()
|
|
|
|
fig, ax = plt.subplots()
|
|
analysis_counts.plot(kind='bar', ax=ax)
|
|
ax.set_title("Tipos de análisis realizados")
|
|
ax.set_xlabel("Tipo de análisis")
|
|
ax.set_ylabel("Cantidad")
|
|
st.pyplot(fig)
|
|
|
|
# Progreso a lo largo del tiempo
|
|
dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']]
|
|
analysis_counts = pd.Series(dates).value_counts().sort_index()
|
|
|
|
fig, ax = plt.subplots()
|
|
analysis_counts.plot(kind='line', ax=ax)
|
|
ax.set_title("Análisis realizados a lo largo del tiempo")
|
|
ax.set_xlabel("Fecha")
|
|
ax.set_ylabel("Cantidad de análisis")
|
|
st.pyplot(fig)
|
|
|
|
##########################################################
|
|
with st.expander("Histórico de Análisis Morfosintácticos"):
|
|
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
|
|
for entry in morphosyntax_entries:
|
|
st.subheader(f"Análisis del {entry['timestamp']}")
|
|
if entry['arc_diagrams']:
|
|
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
|
|
|
|
|
|
##########################################################
|
|
with st.expander("Histórico de Análisis Semánticos"):
|
|
semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
|
|
for entry in semantic_entries:
|
|
st.subheader(f"Análisis del {entry['timestamp']}")
|
|
|
|
# Mostrar conceptos clave
|
|
if 'key_concepts' in entry:
|
|
st.write("Conceptos clave:")
|
|
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
|
|
#st.write("Conceptos clave:")
|
|
#st.write(concepts_str)
|
|
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
|
|
|
|
# Mostrar gráfico
|
|
if 'graph' in entry:
|
|
try:
|
|
img_bytes = base64.b64decode(entry['graph'])
|
|
st.image(img_bytes, caption="Gráfico de relaciones conceptuales")
|
|
except Exception as e:
|
|
st.error(f"No se pudo mostrar el gráfico: {str(e)}")
|
|
|
|
##########################################################
|
|
with st.expander("Histórico de Análisis Discursivos"):
|
|
discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
|
|
for entry in discourse_entries:
|
|
st.subheader(f"Análisis del {entry['timestamp']}")
|
|
|
|
# Mostrar conceptos clave para ambos documentos
|
|
if 'key_concepts1' in entry:
|
|
concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']])
|
|
st.write("Conceptos clave del documento 1:")
|
|
#st.write(concepts_str1)
|
|
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str1}</div>", unsafe_allow_html=True)
|
|
|
|
if 'key_concepts2' in entry:
|
|
concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']])
|
|
st.write("Conceptos clave del documento 2:")
|
|
#st.write(concepts_str2)
|
|
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str2}</div>", unsafe_allow_html=True)
|
|
|
|
try:
|
|
if 'combined_graph' in entry and entry['combined_graph']:
|
|
img_bytes = base64.b64decode(entry['combined_graph'])
|
|
st.image(img_bytes)
|
|
elif 'graph1' in entry and 'graph2' in entry:
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
if entry['graph1']:
|
|
img_bytes1 = base64.b64decode(entry['graph1'])
|
|
st.image(img_bytes1)
|
|
with col2:
|
|
if entry['graph2']:
|
|
img_bytes2 = base64.b64decode(entry['graph2'])
|
|
st.image(img_bytes2)
|
|
else:
|
|
st.write("No se encontraron gráficos para este análisis.")
|
|
except Exception as e:
|
|
st.error(f"No se pudieron mostrar los gráficos: {str(e)}")
|
|
st.write("Datos de los gráficos (para depuración):")
|
|
if 'graph1' in entry:
|
|
st.write("Graph 1:", entry['graph1'][:100] + "...")
|
|
if 'graph2' in entry:
|
|
st.write("Graph 2:", entry['graph2'][:100] + "...")
|
|
if 'combined_graph' in entry:
|
|
st.write("Combined Graph:", entry['combined_graph'][:100] + "...")
|
|
|
|
##########################################################
|
|
with st.expander("Histórico de Conversaciones con el ChatBot"):
|
|
if 'chat_history' in student_data:
|
|
for i, chat in enumerate(student_data['chat_history']):
|
|
st.subheader(f"Conversación {i+1} - {chat['timestamp']}")
|
|
for message in chat['messages']:
|
|
if message['role'] == 'user':
|
|
st.write("Usuario: " + message['content'])
|
|
else:
|
|
st.write("Asistente: " + message['content'])
|
|
st.write("---")
|
|
else:
|
|
st.write("No se encontraron conversaciones con el ChatBot.")
|
|
|
|
# Añadir logs para depuración
|
|
if st.checkbox("Mostrar datos de depuración"):
|
|
st.write("Datos del estudiante (para depuración):")
|
|
st.json(student_data)
|
|
|
|
|
|
'''
|
|
|
|
|
|
__all__ = ['main', 'login_register_page', 'initialize_session_state']
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|