Last commit not found
import streamlit as st | |
import logging | |
from io import BytesIO | |
import base64 | |
from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content | |
from .semantic_process import process_semantic_analysis | |
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input | |
from ..database.database_oldFromV2 import ( | |
initialize_mongodb_connection, | |
initialize_database_connections, | |
create_admin_user, | |
create_student_user, | |
get_user, | |
get_student_data, | |
store_file_contents, | |
retrieve_file_contents, | |
get_user_files, | |
delete_file, | |
store_application_request, | |
store_user_feedback, | |
store_morphosyntax_result, | |
store_semantic_result, | |
store_discourse_analysis_result, | |
store_chat_history, | |
export_analysis_and_chat, | |
get_user_analysis_summary, | |
get_user_recents_chats, | |
get_user_analysis_details | |
) | |
from ..utils.widget_utils import generate_unique_key | |
from .flexible_analysis_handler import FlexibleAnalysisHandler | |
semantic_float_init() | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
def get_translation(t, key, default): | |
return t.get(key, default) | |
def fig_to_base64(fig): | |
buf = BytesIO() | |
fig.savefig(buf, format='png') | |
buf.seek(0) | |
img_str = base64.b64encode(buf.getvalue()).decode() | |
return f'<img src="data:image/png;base64,{img_str}" />' | |
def display_semantic_interface(lang_code, nlp_models, t): | |
st.set_page_config(layout="wide") | |
if 'semantic_chatbot' not in st.session_state: | |
st.session_state.semantic_chatbot = initialize_chatbot('semantic') | |
if 'semantic_chat_history' not in st.session_state: | |
st.session_state.semantic_chat_history = [] | |
if 'show_graph' not in st.session_state: | |
st.session_state.show_graph = False | |
if 'graph_id' not in st.session_state: | |
st.session_state.graph_id = None | |
st.header(t['title']) | |
# Opción para introducir texto | |
text_input = st.text_area( | |
t['text_input_label'], | |
height=150, | |
placeholder=t['text_input_placeholder'], | |
) | |
# Opción para cargar archivo | |
uploaded_file = st.file_uploader(t['file_uploader'], type=['txt']) | |
if st.button(t['analyze_button']): | |
if text_input or uploaded_file is not None: | |
if uploaded_file: | |
text_content = uploaded_file.getvalue().decode('utf-8') | |
else: | |
text_content = text_input | |
# Realizar el análisis | |
analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code) | |
# Guardar el resultado en el estado de la sesión | |
st.session_state.semantic_result = analysis_result | |
# Mostrar resultados | |
display_semantic_results(st.session_state.semantic_result, lang_code, t) | |
# Guardar el resultado del análisis | |
if store_semantic_result(st.session_state.username, text_content, analysis_result): | |
st.success(t['success_message']) | |
else: | |
st.error(t['error_message']) | |
else: | |
st.warning(t['warning_message']) | |
elif 'semantic_result' in st.session_state: | |
# Si hay un resultado guardado, mostrarlo | |
display_semantic_results(st.session_state.semantic_result, lang_code, t) | |
else: | |
st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones | |
def display_semantic_results(result, lang_code, t): | |
if result is None: | |
st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones | |
return | |
# Mostrar conceptos clave | |
with st.expander(t['key_concepts'], expanded=True): | |
concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']]) | |
st.write(concept_text) | |
# Mostrar el gráfico de relaciones conceptuales | |
with st.expander(t['conceptual_relations'], expanded=True): | |
st.pyplot(result['relations_graph']) | |