|
|
|
|
|
|
|
import streamlit as st |
|
import spacy |
|
import networkx as nx |
|
import matplotlib.pyplot as plt |
|
import io |
|
import base64 |
|
from collections import Counter, defaultdict |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
POS_COLORS = { |
|
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', |
|
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', |
|
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', |
|
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', |
|
} |
|
|
|
POS_TRANSLATIONS = { |
|
'es': { |
|
'ADJ': 'Adjetivo', 'ADP': 'Preposici贸n', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', |
|
'CCONJ': 'Conjunci贸n Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjecci贸n', |
|
'NOUN': 'Sustantivo', 'NUM': 'N煤mero', 'PART': 'Part铆cula', 'PRON': 'Pronombre', |
|
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunci贸n Subordinante', 'SYM': 'S铆mbolo', |
|
'VERB': 'Verbo', 'X': 'Otro', |
|
}, |
|
'en': { |
|
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', |
|
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', |
|
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', |
|
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', |
|
'VERB': 'Verb', 'X': 'Other', |
|
}, |
|
'fr': { |
|
'ADJ': 'Adjectif', 'ADP': 'Pr茅position', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', |
|
'CCONJ': 'Conjonction de Coordination', 'DET': 'D茅terminant', 'INTJ': 'Interjection', |
|
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', |
|
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', |
|
'VERB': 'Verbe', 'X': 'Autre', |
|
} |
|
} |
|
|
|
ENTITY_LABELS = { |
|
'es': { |
|
"Personas": "lightblue", |
|
"Lugares": "lightcoral", |
|
"Inventos": "lightgreen", |
|
"Fechas": "lightyellow", |
|
"Conceptos": "lightpink" |
|
}, |
|
'en': { |
|
"People": "lightblue", |
|
"Places": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
}, |
|
'fr': { |
|
"Personnes": "lightblue", |
|
"Lieux": "lightcoral", |
|
"Inventions": "lightgreen", |
|
"Dates": "lightyellow", |
|
"Concepts": "lightpink" |
|
} |
|
} |
|
|
|
|
|
def perform_semantic_analysis(text, nlp, lang_code): |
|
""" |
|
Realiza el an谩lisis sem谩ntico completo del texto. |
|
Args: |
|
text: Texto a analizar |
|
nlp: Modelo de spaCy |
|
lang_code: C贸digo del idioma |
|
Returns: |
|
dict: Resultados del an谩lisis |
|
""" |
|
|
|
logger.info(f"Starting semantic analysis for language: {lang_code}") |
|
try: |
|
doc = nlp(text) |
|
key_concepts = identify_key_concepts(doc) |
|
concept_graph = create_concept_graph(doc, key_concepts) |
|
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) |
|
entities = extract_entities(doc, lang_code) |
|
entity_graph = create_entity_graph(entities) |
|
entity_graph_fig = visualize_entity_graph(entity_graph, lang_code) |
|
|
|
|
|
concept_graph_bytes = fig_to_bytes(concept_graph_fig) |
|
entity_graph_bytes = fig_to_bytes(entity_graph_fig) |
|
|
|
logger.info("Semantic analysis completed successfully") |
|
return { |
|
'key_concepts': key_concepts, |
|
'concept_graph': concept_graph_bytes, |
|
'entities': entities, |
|
'entity_graph': entity_graph_bytes |
|
} |
|
except Exception as e: |
|
logger.error(f"Error in perform_semantic_analysis: {str(e)}") |
|
raise |
|
|
|
|
|
def fig_to_bytes(fig): |
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png') |
|
buf.seek(0) |
|
return buf.getvalue() |
|
|
|
|
|
def fig_to_html(fig): |
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png') |
|
buf.seek(0) |
|
img_str = base64.b64encode(buf.getvalue()).decode() |
|
return f'<img src="data:image/png;base64,{img_str}" />' |
|
|
|
|
|
|
|
def identify_key_concepts(doc): |
|
logger.info("Identifying key concepts") |
|
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) |
|
key_concepts = word_freq.most_common(10) |
|
return [(concept, float(freq)) for concept, freq in key_concepts] |
|
|
|
|
|
def create_concept_graph(doc, key_concepts): |
|
G = nx.Graph() |
|
for concept, freq in key_concepts: |
|
G.add_node(concept, weight=freq) |
|
for sent in doc.sents: |
|
sent_concepts = [token.lemma_.lower() for token in sent if token.lemma_.lower() in dict(key_concepts)] |
|
for i, concept1 in enumerate(sent_concepts): |
|
for concept2 in sent_concepts[i+1:]: |
|
if G.has_edge(concept1, concept2): |
|
G[concept1][concept2]['weight'] += 1 |
|
else: |
|
G.add_edge(concept1, concept2, weight=1) |
|
return G |
|
|
|
def visualize_concept_graph(G, lang_code): |
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
pos = nx.spring_layout(G, k=0.5, iterations=50) |
|
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] |
|
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightblue', alpha=0.8, ax=ax) |
|
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) |
|
edge_weights = [G[u][v]['weight'] for u, v in G.edges()] |
|
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) |
|
title = { |
|
'es': "Relaciones entre Conceptos Clave", |
|
'en': "Key Concept Relations", |
|
'fr': "Relations entre Concepts Cl茅s" |
|
} |
|
ax.set_title(title[lang_code], fontsize=16) |
|
ax.axis('off') |
|
plt.tight_layout() |
|
return fig |
|
|
|
def create_entity_graph(entities): |
|
G = nx.Graph() |
|
for entity_type, entity_list in entities.items(): |
|
for entity in entity_list: |
|
G.add_node(entity, type=entity_type) |
|
for i, entity1 in enumerate(entity_list): |
|
for entity2 in entity_list[i+1:]: |
|
G.add_edge(entity1, entity2) |
|
return G |
|
|
|
def visualize_entity_graph(G, lang_code): |
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
pos = nx.spring_layout(G) |
|
for entity_type, color in ENTITY_LABELS[lang_code].items(): |
|
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] |
|
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) |
|
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) |
|
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) |
|
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) |
|
ax.axis('off') |
|
plt.tight_layout() |
|
return fig |
|
|
|
|
|
|
|
def create_topic_graph(topics, doc): |
|
G = nx.Graph() |
|
for topic in topics: |
|
G.add_node(topic, weight=doc.text.count(topic)) |
|
for i, topic1 in enumerate(topics): |
|
for topic2 in topics[i+1:]: |
|
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) |
|
if weight > 0: |
|
G.add_edge(topic1, topic2, weight=weight) |
|
return G |
|
|
|
def visualize_topic_graph(G, lang_code): |
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
pos = nx.spring_layout(G) |
|
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] |
|
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) |
|
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) |
|
edge_weights = [G[u][v]['weight'] for u, v in G.edges()] |
|
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) |
|
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) |
|
ax.axis('off') |
|
plt.tight_layout() |
|
return fig |
|
|
|
|
|
def generate_summary(doc, lang_code): |
|
sentences = list(doc.sents) |
|
summary = sentences[:3] |
|
return " ".join([sent.text for sent in summary]) |
|
|
|
def extract_entities(doc, lang_code): |
|
entities = defaultdict(list) |
|
for ent in doc.ents: |
|
if ent.label_ in ENTITY_LABELS[lang_code]: |
|
entities[ent.label_].append(ent.text) |
|
return dict(entities) |
|
|
|
def analyze_sentiment(doc, lang_code): |
|
positive_words = sum(1 for token in doc if token.sentiment > 0) |
|
negative_words = sum(1 for token in doc if token.sentiment < 0) |
|
total_words = len(doc) |
|
if positive_words > negative_words: |
|
return "Positivo" |
|
elif negative_words > positive_words: |
|
return "Negativo" |
|
else: |
|
return "Neutral" |
|
|
|
def extract_topics(doc, lang_code): |
|
vectorizer = TfidfVectorizer(stop_words='english', max_features=5) |
|
tfidf_matrix = vectorizer.fit_transform([doc.text]) |
|
feature_names = vectorizer.get_feature_names_out() |
|
return list(feature_names) |
|
|
|
|
|
__all__ = [ |
|
'perform_semantic_analysis', |
|
'identify_key_concepts', |
|
'create_concept_graph', |
|
'visualize_concept_graph', |
|
'create_entity_graph', |
|
'visualize_entity_graph', |
|
'generate_summary', |
|
'extract_entities', |
|
'analyze_sentiment', |
|
'create_topic_graph', |
|
'visualize_topic_graph', |
|
'extract_topics', |
|
'ENTITY_LABELS', |
|
'POS_COLORS', |
|
'POS_TRANSLATIONS' |
|
] |