v3 / modules /text_analysis /semantic_analysis.py
AIdeaText's picture
Update modules/text_analysis/semantic_analysis.py
724e476 verified
raw
history blame
9.81 kB
# modules/text_analysis/semantic_analysis.py
# [Mantener todas las importaciones y constantes existentes...]
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
import io
import base64
from collections import Counter, defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import logging
logger = logging.getLogger(__name__)
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo', 'ADP': 'Preposici贸n', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
'CCONJ': 'Conjunci贸n Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjecci贸n',
'NOUN': 'Sustantivo', 'NUM': 'N煤mero', 'PART': 'Part铆cula', 'PRON': 'Pronombre',
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunci贸n Subordinante', 'SYM': 'S铆mbolo',
'VERB': 'Verbo', 'X': 'Otro',
},
'en': {
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
'VERB': 'Verb', 'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif', 'ADP': 'Pr茅position', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination', 'DET': 'D茅terminant', 'INTJ': 'Interjection',
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
'VERB': 'Verbe', 'X': 'Autre',
}
}
ENTITY_LABELS = {
'es': {
"Personas": "lightblue",
"Lugares": "lightcoral",
"Inventos": "lightgreen",
"Fechas": "lightyellow",
"Conceptos": "lightpink"
},
'en': {
"People": "lightblue",
"Places": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
},
'fr': {
"Personnes": "lightblue",
"Lieux": "lightcoral",
"Inventions": "lightgreen",
"Dates": "lightyellow",
"Concepts": "lightpink"
}
}
##############################################################################################################
def perform_semantic_analysis(text, nlp, lang_code):
"""
Realiza el an谩lisis sem谩ntico completo del texto.
Args:
text: Texto a analizar
nlp: Modelo de spaCy
lang_code: C贸digo del idioma
Returns:
dict: Resultados del an谩lisis
"""
logger.info(f"Starting semantic analysis for language: {lang_code}")
try:
doc = nlp(text)
key_concepts = identify_key_concepts(doc)
concept_graph = create_concept_graph(doc, key_concepts)
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
entities = extract_entities(doc, lang_code)
entity_graph = create_entity_graph(entities)
entity_graph_fig = visualize_entity_graph(entity_graph, lang_code)
# Convertir figuras a bytes
concept_graph_bytes = fig_to_bytes(concept_graph_fig)
entity_graph_bytes = fig_to_bytes(entity_graph_fig)
logger.info("Semantic analysis completed successfully")
return {
'key_concepts': key_concepts,
'concept_graph': concept_graph_bytes,
'entities': entities,
'entity_graph': entity_graph_bytes
}
except Exception as e:
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
raise
def fig_to_bytes(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return buf.getvalue()
def fig_to_html(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
img_str = base64.b64encode(buf.getvalue()).decode()
return f'<img src="data:image/png;base64,{img_str}" />'
def identify_key_concepts(doc):
logger.info("Identifying key concepts")
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
key_concepts = word_freq.most_common(10)
return [(concept, float(freq)) for concept, freq in key_concepts]
def create_concept_graph(doc, key_concepts):
G = nx.Graph()
for concept, freq in key_concepts:
G.add_node(concept, weight=freq)
for sent in doc.sents:
sent_concepts = [token.lemma_.lower() for token in sent if token.lemma_.lower() in dict(key_concepts)]
for i, concept1 in enumerate(sent_concepts):
for concept2 in sent_concepts[i+1:]:
if G.has_edge(concept1, concept2):
G[concept1][concept2]['weight'] += 1
else:
G.add_edge(concept1, concept2, weight=1)
return G
def visualize_concept_graph(G, lang_code):
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G, k=0.5, iterations=50)
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightblue', alpha=0.8, ax=ax)
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
title = {
'es': "Relaciones entre Conceptos Clave",
'en': "Key Concept Relations",
'fr': "Relations entre Concepts Cl茅s"
}
ax.set_title(title[lang_code], fontsize=16)
ax.axis('off')
plt.tight_layout()
return fig
def create_entity_graph(entities):
G = nx.Graph()
for entity_type, entity_list in entities.items():
for entity in entity_list:
G.add_node(entity, type=entity_type)
for i, entity1 in enumerate(entity_list):
for entity2 in entity_list[i+1:]:
G.add_edge(entity1, entity2)
return G
def visualize_entity_graph(G, lang_code):
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G)
for entity_type, color in ENTITY_LABELS[lang_code].items():
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type]
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax)
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax)
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax)
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16)
ax.axis('off')
plt.tight_layout()
return fig
#################################################################################
def create_topic_graph(topics, doc):
G = nx.Graph()
for topic in topics:
G.add_node(topic, weight=doc.text.count(topic))
for i, topic1 in enumerate(topics):
for topic2 in topics[i+1:]:
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text)
if weight > 0:
G.add_edge(topic1, topic2, weight=weight)
return G
def visualize_topic_graph(G, lang_code):
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G)
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax)
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16)
ax.axis('off')
plt.tight_layout()
return fig
###########################################################################################
def generate_summary(doc, lang_code):
sentences = list(doc.sents)
summary = sentences[:3] # Toma las primeras 3 oraciones como resumen
return " ".join([sent.text for sent in summary])
def extract_entities(doc, lang_code):
entities = defaultdict(list)
for ent in doc.ents:
if ent.label_ in ENTITY_LABELS[lang_code]:
entities[ent.label_].append(ent.text)
return dict(entities)
def analyze_sentiment(doc, lang_code):
positive_words = sum(1 for token in doc if token.sentiment > 0)
negative_words = sum(1 for token in doc if token.sentiment < 0)
total_words = len(doc)
if positive_words > negative_words:
return "Positivo"
elif negative_words > positive_words:
return "Negativo"
else:
return "Neutral"
def extract_topics(doc, lang_code):
vectorizer = TfidfVectorizer(stop_words='english', max_features=5)
tfidf_matrix = vectorizer.fit_transform([doc.text])
feature_names = vectorizer.get_feature_names_out()
return list(feature_names)
# Aseg煤rate de que todas las funciones necesarias est茅n exportadas
__all__ = [
'perform_semantic_analysis',
'identify_key_concepts',
'create_concept_graph',
'visualize_concept_graph',
'create_entity_graph',
'visualize_entity_graph',
'generate_summary',
'extract_entities',
'analyze_sentiment',
'create_topic_graph',
'visualize_topic_graph',
'extract_topics',
'ENTITY_LABELS',
'POS_COLORS',
'POS_TRANSLATIONS'
]