Last commit not found
import streamlit as st | |
import logging | |
import time | |
from .semantic_process import process_semantic_analysis | |
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input | |
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files | |
from ..utils.widget_utils import generate_unique_key | |
logger = logging.getLogger(__name__) | |
def get_translation(t, key, default): | |
return t.get(key, default) | |
def display_semantic_interface(lang_code, nlp_models, t): | |
# Inicializar el chatbot y el historial del chat al principio de la función | |
if 'semantic_chatbot' not in st.session_state: | |
st.session_state.semantic_chatbot = initialize_chatbot('semantic') | |
if 'semantic_chat_history' not in st.session_state: | |
st.session_state.semantic_chat_history = [] | |
st.markdown(""" | |
<style> | |
.stTabs [data-baseweb="tab-list"] { | |
gap: 24px; | |
} | |
.stTabs [data-baseweb="tab"] { | |
height: 50px; | |
white-space: pre-wrap; | |
background-color: #F0F2F6; | |
border-radius: 4px 4px 0px 0px; | |
gap: 1px; | |
padding-top: 10px; | |
padding-bottom: 10px; | |
} | |
.stTabs [aria-selected="true"] { | |
background-color: #FFFFFF; | |
} | |
.file-list { | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
padding: 10px; | |
margin-top: 20px; | |
} | |
.file-item { | |
display: flex; | |
justify-content: space-between; | |
align-items: center; | |
padding: 5px 0; | |
border-bottom: 1px solid #eee; | |
} | |
.file-item:last-child { | |
border-bottom: none; | |
} | |
.chat-message-container { | |
height: 400px; | |
overflow-y: auto; | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
padding: 10px; | |
margin-bottom: 10px; | |
} | |
.stButton { | |
margin-top: 0 !important; | |
} | |
.graph-container { | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
padding: 10px; | |
} | |
.semantic-initial-message { | |
background-color: #f0f2f6; | |
border-left: 5px solid #4CAF50; | |
padding: 10px; | |
border-radius: 5px; | |
font-size: 16px; | |
margin-bottom: 20px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Mostrar el mensaje inicial como un párrafo estilizado | |
st.markdown(f""" | |
<div class="semantic-initial-message"> | |
{t['semantic_initial_message']} | |
</div> | |
""", unsafe_allow_html=True) | |
tab1, tab2 = st.tabs(["Upload", "Analyze"]) | |
with tab1: | |
st.subheader("File Management") | |
uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) | |
if uploaded_file is not None: | |
file_contents = uploaded_file.getvalue().decode('utf-8') | |
if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): | |
st.success(f"File {uploaded_file.name} uploaded and saved successfully") | |
else: | |
st.error("Error uploading file") | |
st.markdown("---") # Línea separadora | |
st.subheader("Manage Uploaded Files") | |
user_files = get_user_files(st.session_state.username, 'semantic') | |
if user_files: | |
for file in user_files: | |
col1, col2 = st.columns([3, 1]) | |
with col1: | |
st.write(file['file_name']) | |
with col2: | |
if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): | |
if delete_file(st.session_state.username, file['file_name'], 'semantic'): | |
st.success(f"File {file['file_name']} deleted successfully") | |
st.rerun() | |
else: | |
st.error(f"Error deleting file {file['file_name']}") | |
else: | |
st.info("No files uploaded yet.") | |
with tab2: | |
st.subheader("Select File for Analysis") | |
user_files = get_user_files(st.session_state.username, 'semantic') | |
file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] | |
selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) | |
if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): | |
if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): | |
file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') | |
if file_contents: | |
st.session_state.file_contents = file_contents | |
with st.spinner("Analyzing..."): | |
try: | |
nlp_model = nlp_models[lang_code] | |
concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) | |
st.session_state.concept_graph = concept_graph | |
st.session_state.entity_graph = entity_graph | |
st.session_state.key_concepts = key_concepts | |
st.success("Analysis completed successfully") | |
except Exception as e: | |
logger.error(f"Error during analysis: {str(e)}") | |
st.error(f"Error during analysis: {str(e)}") | |
else: | |
st.error("Error loading file contents") | |
else: | |
st.error("Please select a file to analyze") | |
# Chat and Visualization --1 | |
with st.container(): | |
col_chat, col_graph = st.columns([1, 1]) | |
with col_chat: | |
st.subheader("Chat with AI") | |
# Create a container for the chat messages | |
chat_container = st.container() | |
# Display chat messages from history on app rerun | |
with chat_container: | |
for message in st.session_state.semantic_chat_history: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) | |
col1, col2 = st.columns([3, 1]) | |
with col1: | |
send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) | |
with col2: | |
clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) | |
if send_button and user_input: | |
st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) | |
if user_input.startswith('/analyze_current'): | |
response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) | |
else: | |
response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) | |
st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) | |
st.rerun() | |
if clear_button: | |
st.session_state.semantic_chat_history = [] | |
st.rerun() | |
''' | |
# Accept user input | |
if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')): | |
# Add user message to chat history | |
st.session_state.semantic_chat_history.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Generate and display assistant response | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
if prompt.startswith('/analyze_current'): | |
assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) | |
else: | |
assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', '')) | |
# Simulate stream of response with milliseconds delay | |
for chunk in assistant_response.split(): | |
full_response += chunk + " " | |
time.sleep(0.05) | |
# Add a blinking cursor to simulate typing | |
message_placeholder.markdown(full_response + "▌") | |
message_placeholder.markdown(full_response) | |
# Add assistant response to chat history | |
st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response}) | |
# Add a clear chat button | |
if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): | |
st.session_state.semantic_chat_history = [{"role": "assistant", "content": "Chat cleared. How can I assist you?"}] | |
st.rerun() | |
''' | |
''' | |
with col_graph: | |
st.subheader("Visualization") | |
if 'key_concepts' in st.session_state: | |
st.write("Key Concepts:") | |
st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) | |
tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) | |
with tab_concept: | |
if 'concept_graph' in st.session_state: | |
st.pyplot(st.session_state.concept_graph) | |
else: | |
st.info("No concept graph available. Please analyze a document first.") | |
with tab_entity: | |
if 'entity_graph' in st.session_state: | |
st.pyplot(st.session_state.entity_graph) | |
else: | |
st.info("No entity graph available. Please analyze a document first.") | |
''' |