v3 / modules /ui /ui_backUp-18-9-2024.py
AIdeaText's picture
Upload 216 files
c58df45 verified
raw
history blame
57.8 kB
# Importaciones generales
import sys
import streamlit as st
from translations import get_translations
import re
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import time
from datetime import datetime
from streamlit_player import st_player # Necesitar谩s instalar esta librer铆a: pip install streamlit-player
from spacy import displacy
import logging
import random
######################################################
# Configuraci贸n del logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
######################################################
# Importaciones locales
from ..email.email import send_email_notification
######################################################
# Importaciones locales de autenticaci贸n y base de datos
from ..auth.auth import (
authenticate_user,
register_user
)
######################################################
from ..database.database_oldFromV2 import (
create_admin_user,
create_student_user,
get_user,
get_student_data,
store_file_contents, #gesti贸n archivos
retrieve_file_contents, #gesti贸n archivos
get_user_files, #gesti贸n archivos
delete_file, # #gesti贸n archivos
store_application_request, # form
store_user_feedback, # form
store_morphosyntax_result,
store_semantic_result,
store_discourse_analysis_result,
store_chat_history,
export_analysis_and_chat
)
######################################################
# Importaciones locales de uiadmin
from ..admin.admin_ui import admin_page
######################################################
# Importaciones locales funciones de an谩lisis
from ..text_analysis.morpho_analysis import (
generate_arc_diagram,
get_repeated_words_colors,
highlight_repeated_words,
POS_COLORS,
POS_TRANSLATIONS,
perform_advanced_morphosyntactic_analysis
)
######################################################
from ..text_analysis.semantic_analysis import (
#visualize_semantic_relations,
perform_semantic_analysis,
create_concept_graph,
visualize_concept_graph
)
######################################################
from ..text_analysis.discourse_analysis import (
perform_discourse_analysis,
display_discourse_analysis_results
)
######################################################
from ..chatbot.chatbot import (
initialize_chatbot,
process_morphosyntactic_input,
process_semantic_input,
process_discourse_input,
process_chat_input,
get_connectors,
handle_semantic_commands,
generate_topics_visualization,
extract_topics,
get_semantic_chatbot_response
)
#####################-- Funciones de inicializaci贸n y configuraci贸n--- ##############################################################################
def initialize_session_state():
if 'initialized' not in st.session_state:
st.session_state.clear()
st.session_state.initialized = True
st.session_state.logged_in = False
st.session_state.page = 'login'
st.session_state.username = None
st.session_state.role = None
def main():
initialize_session_state()
print(f"P谩gina actual: {st.session_state.page}")
print(f"Rol del usuario: {st.session_state.role}")
if st.session_state.page == 'login':
login_register_page()
elif st.session_state.page == 'admin':
print("Intentando mostrar p谩gina de admin")
admin_page()
elif st.session_state.page == 'user':
user_page()
else:
print(f"P谩gina no reconocida: {st.session_state.page}")
print(f"Estado final de la sesi贸n: {st.session_state}")
#############################--- # Funciones de autenticaci贸n y registro --- #####################################################################
def login_register_page():
st.title("AIdeaText")
left_column, right_column = st.columns([1, 3])
with left_column:
tab1, tab2 = st.tabs(["Iniciar Sesi贸n", "Registrarse"])
with tab1:
login_form()
with tab2:
register_form()
with right_column:
display_videos_and_info()
def login_form():
with st.form("login_form"):
username = st.text_input("Correo electr贸nico")
password = st.text_input("Contrase帽a", type="password")
submit_button = st.form_submit_button("Iniciar Sesi贸n")
if submit_button:
success, role = authenticate_user(username, password)
if success:
st.session_state.logged_in = True
st.session_state.username = username
st.session_state.role = role
st.session_state.page = 'admin' if role == 'Administrador' else 'user'
st.experimental_rerun()
else:
st.error("Credenciales incorrectas")
def register_form():
st.header("Solicitar prueba de la aplicaci贸n")
name = st.text_input("Nombre completo")
email = st.text_input("Correo electr贸nico institucional")
institution = st.text_input("Instituci贸n")
role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"])
reason = st.text_area("驴Por qu茅 est谩s interesado en probar AIdeaText?")
if st.button("Enviar solicitud"):
logger.info(f"Attempting to submit application for {email}")
logger.debug(f"Form data: name={name}, email={email}, institution={institution}, role={role}, reason={reason}")
if not name or not email or not institution or not reason:
logger.warning("Incomplete form submission")
st.error("Por favor, completa todos los campos.")
elif not is_institutional_email(email):
logger.warning(f"Non-institutional email used: {email}")
st.error("Por favor, utiliza un correo electr贸nico institucional.")
else:
logger.info(f"Attempting to store application for {email}")
success = store_application_request(name, email, institution, role, reason)
if success:
st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.")
logger.info(f"Application request stored successfully for {email}")
else:
st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo m谩s tarde.")
logger.error(f"Failed to store application request for {email}")
def is_institutional_email(email):
forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com']
return not any(domain in email.lower() for domain in forbidden_domains)
###########################################--- Funciones de interfaz general --- ######################################################
def user_page():
# Asumimos que el idioma seleccionado est谩 almacenado en st.session_state.lang_code
# Si no est谩 definido, usamos 'es' como valor predeterminado
t = get_translations(lang_code)
st.title(t['welcome'])
st.write(f"{t['hello']}, {st.session_state.username}")
# Dividir la pantalla en dos columnas
col1, col2 = st.columns(2)
with col1:
st.subheader(t['chat_title'])
display_chatbot_interface(lang_code)
with col2:
st.subheader(t['results_title'])
if 'current_analysis' in st.session_state and st.session_state.current_analysis is not None:
display_analysis_results(st.session_state.current_analysis, lang_code)
if st.button(t['export_button']):
if export_analysis_and_chat(st.session_state.username, st.session_state.current_analysis, st.session_state.messages):
st.success(t['export_success'])
else:
st.error(t['export_error'])
else:
st.info(t['no_analysis'])
def admin_page():
st.title("Panel de Administraci贸n")
st.write(f"Bienvenida, {st.session_state.username}")
st.header("Crear Nuevo Usuario Estudiante")
new_username = st.text_input("Correo electr贸nico del nuevo usuario", key="admin_new_username")
new_password = st.text_input("Contrase帽a", type="password", key="admin_new_password")
if st.button("Crear Usuario", key="admin_create_user"):
if create_student_user(new_username, new_password):
st.success(f"Usuario estudiante {new_username} creado exitosamente")
else:
st.error("Error al crear el usuario estudiante")
# Aqu铆 puedes a帽adir m谩s funcionalidades para el panel de administraci贸n
def display_videos_and_info():
st.header("Videos: pitch, demos, entrevistas, otros")
videos = {
"Presentaci贸n en PyCon Colombia, Medell铆n, 2024": "https://www.youtube.com/watch?v=Jn545-IKx5Q",
"Presentaci贸n fundaci贸n Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164",
"Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s",
"Entrevista Dr. Guillermo Ru铆z": "https://www.youtube.com/watch?v=_ch8cRja3oc",
"Demo versi贸n desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY"
}
selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys()))
if selected_title in videos:
try:
st_player(videos[selected_title])
except Exception as e:
st.error(f"Error al cargar el video: {str(e)}")
st.markdown("""
## Novedades de la versi贸n actual
- Nueva funci贸n de an谩lisis sem谩ntico
- Soporte para m煤ltiples idiomas
- Interfaz mejorada para una mejor experiencia de usuario
""")
def display_feedback_form(lang_code, t):
logging.info(f"display_feedback_form called with lang_code: {lang_code}")
st.header(t['title'])
name = st.text_input(t['name'], key=f"feedback_name_{lang_code}")
email = st.text_input(t['email'], key=f"feedback_email_{lang_code}")
feedback = st.text_area(t['feedback'], key=f"feedback_text_{lang_code}")
if st.button(t['submit'], key=f"feedback_submit_{lang_code}"):
if name and email and feedback:
if store_user_feedback(st.session_state.username, name, email, feedback):
st.success(t['success'])
else:
st.error(t['error'])
else:
st.warning("Por favor, completa todos los campos.")
def display_student_progress(username, lang_code, t):
student_data = get_student_data(username)
if student_data is None or len(student_data['entries']) == 0:
st.warning("No se encontraron datos para este estudiante.")
st.info("Intenta realizar algunos an谩lisis de texto primero.")
return
st.title(f"Progreso de {username}")
with st.expander("Resumen de Actividades y Progreso", expanded=True):
# Resumen de actividades
total_entries = len(student_data['entries'])
st.write(f"Total de an谩lisis realizados: {total_entries}")
# Gr谩fico de tipos de an谩lisis
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
analysis_counts = pd.Series(analysis_types).value_counts()
fig, ax = plt.subplots()
analysis_counts.plot(kind='bar', ax=ax)
ax.set_title("Tipos de an谩lisis realizados")
ax.set_xlabel("Tipo de an谩lisis")
ax.set_ylabel("Cantidad")
st.pyplot(fig)
# Progreso a lo largo del tiempo
dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']]
analysis_counts = pd.Series(dates).value_counts().sort_index()
fig, ax = plt.subplots()
analysis_counts.plot(kind='line', ax=ax)
ax.set_title("An谩lisis realizados a lo largo del tiempo")
ax.set_xlabel("Fecha")
ax.set_ylabel("Cantidad de an谩lisis")
st.pyplot(fig)
##########################################################
with st.expander("Hist贸rico de An谩lisis Morfosint谩cticos"):
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
for entry in morphosyntax_entries:
st.subheader(f"An谩lisis del {entry['timestamp']}")
if entry['arc_diagrams']:
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
##########################################################
with st.expander("Hist贸rico de An谩lisis Sem谩nticos"):
semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
for entry in semantic_entries:
st.subheader(f"An谩lisis del {entry['timestamp']}")
# Mostrar conceptos clave
if 'key_concepts' in entry:
st.write("Conceptos clave:")
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
#st.write("Conceptos clave:")
#st.write(concepts_str)
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
# Mostrar gr谩fico
if 'graph' in entry:
try:
img_bytes = base64.b64decode(entry['graph'])
st.image(img_bytes, caption="Gr谩fico de relaciones conceptuales")
except Exception as e:
st.error(f"No se pudo mostrar el gr谩fico: {str(e)}")
##########################################################
with st.expander("Hist贸rico de An谩lisis Discursivos"):
discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
for entry in discourse_entries:
st.subheader(f"An谩lisis del {entry['timestamp']}")
# Mostrar conceptos clave para ambos documentos
if 'key_concepts1' in entry:
concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']])
st.write("Conceptos clave del documento 1:")
#st.write(concepts_str1)
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str1}</div>", unsafe_allow_html=True)
if 'key_concepts2' in entry:
concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']])
st.write("Conceptos clave del documento 2:")
#st.write(concepts_str2)
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str2}</div>", unsafe_allow_html=True)
try:
if 'combined_graph' in entry and entry['combined_graph']:
img_bytes = base64.b64decode(entry['combined_graph'])
st.image(img_bytes)
elif 'graph1' in entry and 'graph2' in entry:
col1, col2 = st.columns(2)
with col1:
if entry['graph1']:
img_bytes1 = base64.b64decode(entry['graph1'])
st.image(img_bytes1)
with col2:
if entry['graph2']:
img_bytes2 = base64.b64decode(entry['graph2'])
st.image(img_bytes2)
else:
st.write("No se encontraron gr谩ficos para este an谩lisis.")
except Exception as e:
st.error(f"No se pudieron mostrar los gr谩ficos: {str(e)}")
st.write("Datos de los gr谩ficos (para depuraci贸n):")
if 'graph1' in entry:
st.write("Graph 1:", entry['graph1'][:100] + "...")
if 'graph2' in entry:
st.write("Graph 2:", entry['graph2'][:100] + "...")
if 'combined_graph' in entry:
st.write("Combined Graph:", entry['combined_graph'][:100] + "...")
##########################################################
with st.expander("Hist贸rico de Conversaciones con el ChatBot"):
if 'chat_history' in student_data:
for i, chat in enumerate(student_data['chat_history']):
st.subheader(f"Conversaci贸n {i+1} - {chat['timestamp']}")
for message in chat['messages']:
if message['role'] == 'user':
st.write("Usuario: " + message['content'])
else:
st.write("Asistente: " + message['content'])
st.write("---")
else:
st.write("No se encontraron conversaciones con el ChatBot.")
# A帽adir logs para depuraci贸n
if st.checkbox("Mostrar datos de depuraci贸n"):
st.write("Datos del estudiante (para depuraci贸n):")
st.json(student_data)
#####################--- Funciones de manejo de archivos --- #############################################################################
def handle_file_upload(username, lang_code, nlp_models, t, analysis_type):
st.subheader(t['get_text']('file_upload_section', analysis_type.upper(), 'File Upload'))
uploaded_file = st.file_uploader(
t['get_text']('file_uploader', analysis_type.upper(), 'Upload a file'),
type=['txt', 'pdf', 'docx', 'doc', 'odt']
)
if uploaded_file is not None:
file_contents = read_file_contents(uploaded_file)
if store_file_contents(username, uploaded_file.name, file_contents, analysis_type):
st.success(t['get_text']('file_upload_success', analysis_type.upper(), 'File uploaded successfully'))
return file_contents, uploaded_file.name
else:
st.error(t['get_text']('file_upload_error', analysis_type.upper(), 'Error uploading file'))
return None, None
def read_file_contents(uploaded_file):
# Implementar la l贸gica para leer diferentes tipos de archivos
# Por ahora, asumimos que es un archivo de texto
return uploaded_file.getvalue().decode('utf-8')
######################--- Funciones generales de an谩lisis ---########################################################
def display_analysis_results(analysis, lang_code, t):
if analysis is None:
st.warning(t.get('no_analysis', "No hay an谩lisis disponible."))
return
if not isinstance(analysis, dict):
st.error(f"Error: El resultado del an谩lisis no es un diccionario. Tipo actual: {type(analysis)}")
return
if 'type' not in analysis:
st.error("Error: El resultado del an谩lisis no contiene la clave 'type'")
st.write("Claves presentes en el resultado:", list(analysis.keys()))
return
if analysis['type'] == 'morphosyntactic':
st.subheader(t.get('morphosyntactic_title', "An谩lisis Morfosint谩ctico"))
display_morphosyntax_results(analysis['result'], lang_code, t)
elif analysis['type'] == 'semantic':
st.subheader(t.get('semantic_title', "An谩lisis Sem谩ntico"))
display_semantic_results(analysis['result'], lang_code, t)
elif analysis['type'] == 'discourse':
st.subheader(t.get('discourse_title', "An谩lisis del Discurso"))
display_discourse_results(analysis['result'], lang_code, t)
else:
st.warning(t.get('no_analysis', "No hay an谩lisis disponible."))
# Mostrar el contenido completo del an谩lisis para depuraci贸n
st.write("Contenido completo del an谩lisis:", analysis)
def handle_user_input(user_input, lang_code, nlp_models, analysis_type, file_contents=None):
response = process_chat_input(user_input, lang_code, nlp_models, analysis_type, file_contents, t)
# Procesa la respuesta y actualiza la interfaz de usuario
###################################--- Funciones espec铆ficas de an谩lisis morfosint谩ctico ---################################################################
def display_morphosyntax_analysis_interface(user_input, nlp_models, lang_code, t):
logging.info(f"Displaying morphosyntax analysis interface. Language code: {lang_code}")
# Inicializar el historial del chat si no existe
if 'morphosyntax_chat_history' not in st.session_state:
initial_message = t['get_text']('initial_message', 'MORPHOSYNTACTIC',
"Este es un chatbot para an谩lisis morfosint谩ctico. Para generar un diagrama de arco, "
"use el comando /analisis_morfosintactico seguido del texto entre corchetes.")
st.session_state.morphosyntax_chat_history = [{"role": "assistant", "content": initial_message}]
# Contenedor para el chat
chat_container = st.container()
# Mostrar el historial del chat
with chat_container:
for message in st.session_state.morphosyntax_chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
if "visualization" in message:
st.components.v1.html(message["visualization"], height=450, scrolling=True)
# Input del usuario
user_input = st.chat_input(t['get_text']('chat_placeholder', 'MORPHOSYNTACTIC',
"Ingrese su mensaje o use /analisis_morfosintactico [texto] para analizar"))
if user_input:
# A帽adir el mensaje del usuario al historial
st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input})
# Procesar el input del usuario
if user_input.startswith('/analisis_morfosintactico'):
text_to_analyze = user_input.split('[', 1)[1].rsplit(']', 1)[0]
try:
result = perform_advanced_morphosyntactic_analysis(text_to_analyze, nlp_models[lang_code])
# Guardar el resultado en el estado de la sesi贸n
st.session_state.current_analysis = {
'type': 'morphosyntactic',
'result': result
}
# A帽adir el resultado al historial del chat
response = t['get_text']('analysis_completed', 'MORPHOSYNTACTIC', 'An谩lisis morfosint谩ctico completado.')
st.session_state.morphosyntax_chat_history.append({
"role": "assistant",
"content": response,
"visualization": result['arc_diagram'][0] if result['arc_diagram'] else None
})
# Guardar resultados en la base de datos
if store_morphosyntax_result(
st.session_state.username,
text_to_analyze,
get_repeated_words_colors(nlp_models[lang_code](text_to_analyze)),
result['arc_diagram'],
result['pos_analysis'],
result['morphological_analysis'],
result['sentence_structure']
):
st.success(t['get_text']('success_message', 'MORPHOSYNTACTIC', 'An谩lisis guardado correctamente.'))
else:
st.error(t['get_text']('error_message', 'MORPHOSYNTACTIC', 'Hubo un problema al guardar el an谩lisis.'))
except Exception as e:
error_message = t['get_text']('analysis_error', 'MORPHOSYNTACTIC', f'Ocurri贸 un error durante el an谩lisis: {str(e)}')
st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": error_message})
logging.error(f"Error in morphosyntactic analysis: {str(e)}")
else:
# Aqu铆 puedes procesar otros tipos de inputs del usuario si es necesario
response = t['get_text']('command_not_recognized', 'MORPHOSYNTACTIC',
"Comando no reconocido. Use /analisis_morfosintactico [texto] para realizar un an谩lisis.")
st.session_state.morphosyntax_chat_history.append({"role": "assistant", "content": response})
# Forzar la actualizaci贸n de la interfaz
st.experimental_rerun()
logging.info("Morphosyntax analysis interface displayed successfully")
#################################################################################################
def display_morphosyntax_results(result, lang_code, t):
if result is None:
st.warning(t['no_results']) # A帽ade esta traducci贸n a tu diccionario
return
# doc = result['doc']
# advanced_analysis = result['advanced_analysis']
advanced_analysis = result
# Mostrar leyenda (c贸digo existente)
st.markdown(f"##### {t['legend']}")
legend_html = "<div style='display: flex; flex-wrap: wrap;'>"
for pos, color in POS_COLORS.items():
if pos in POS_TRANSLATIONS[lang_code]:
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>"
legend_html += "</div>"
st.markdown(legend_html, unsafe_allow_html=True)
# Mostrar an谩lisis de palabras repetidas (c贸digo existente)
if 'repeated_words' in advanced_analysis:
with st.expander(t['repeated_words'], expanded=True):
st.markdown(advanced_analysis['repeated_words'], unsafe_allow_html=True)
# Mostrar estructura de oraciones
if 'sentence_structure' in advanced_analysis:
with st.expander(t['sentence_structure'], expanded=True):
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']):
sentence_str = (
f"**{t['sentence']} {i+1}** "
f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- "
f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- "
f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- "
f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}"
)
st.markdown(sentence_str)
else:
st.warning("No se encontr贸 informaci贸n sobre la estructura de las oraciones.")
# Mostrar an谩lisis de categor铆as gramaticales # Mostrar an谩lisis morfol贸gico
col1, col2 = st.columns(2)
with col1:
with st.expander(t['pos_analysis'], expanded=True):
pos_df = pd.DataFrame(advanced_analysis['pos_analysis'])
# Traducir las etiquetas POS a sus nombres en el idioma seleccionado
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
# Renombrar las columnas para mayor claridad
pos_df = pos_df.rename(columns={
'pos': t['grammatical_category'],
'count': t['count'],
'percentage': t['percentage'],
'examples': t['examples']
})
# Mostrar el dataframe
st.dataframe(pos_df)
with col2:
with st.expander(t['morphological_analysis'], expanded=True):
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis'])
# Definir el mapeo de columnas
column_mapping = {
'text': t['word'],
'lemma': t['lemma'],
'pos': t['grammatical_category'],
'dep': t['dependency'],
'morph': t['morphology']
}
# Renombrar las columnas existentes
morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns})
# Traducir las categor铆as gramaticales
morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
# Traducir las dependencias
dep_translations = {
'es': {
'ROOT': 'RA脥Z', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto',
'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto',
'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado',
'advcl': 'cl谩usula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso',
'aux': 'auxiliar', 'cop': 'c贸pula', 'mark': 'marcador', 'nmod': 'modificador nominal',
'appos': 'aposici贸n', 'nummod': 'modificador numeral', 'acl': 'cl谩usula adjetiva',
'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador',
'case': 'caso', 'conj': 'conjunci贸n', 'cc': 'coordinante', 'fixed': 'fijo',
'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis',
'orphan': 'hu茅rfano', 'goeswith': 'va con', 'reparandum': 'reparaci贸n', 'punct': 'puntuaci贸n'
},
'en': {
'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object',
'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement',
'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier',
'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker',
'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun',
'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking',
'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression',
'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan',
'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation'
},
'fr': {
'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect',
'csubj': 'sujet phrastique', 'ccomp': 'compl茅ment phrastique', 'xcomp': 'compl茅ment phrastique ouvert', 'obl': 'oblique',
'vocative': 'vocatif', 'expl': 'expl茅tif', 'dislocated': 'disloqu茅', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial',
'discourse': '茅l茅ment de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal',
'appos': 'apposition', 'nummod': 'modifieur num茅ral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'd茅terminant',
'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression fig茅e',
'flat': 'construction plate', 'compound': 'compos茅', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin',
'goeswith': 'va avec', 'reparandum': 'r茅paration', 'punct': 'ponctuation'
}
}
morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x))
# Traducir la morfolog铆a
def translate_morph(morph_string, lang_code):
morph_translations = {
'es': {
'Gender': 'G茅nero', 'Number': 'N煤mero', 'Case': 'Caso', 'Definite': 'Definido',
'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo',
'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz',
'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural',
'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo',
'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado',
'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto'
},
'en': {
'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person',
'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice',
'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative',
'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle',
'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect'
},
'fr': {
'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'D茅fini', 'PronType': 'Type de Pronom',
'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix',
'Fem': 'F茅minin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif',
'Sub': 'Subjonctif', 'Imp': 'Imp茅ratif', 'Inf': 'Infinitif', 'Part': 'Participe',
'Ger': 'G茅rondif', 'Pres': 'Pr茅sent', 'Past': 'Pass茅', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait'
}
}
for key, value in morph_translations[lang_code].items():
morph_string = morph_string.replace(key, value)
return morph_string
morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code))
# Seleccionar y ordenar las columnas a mostrar
columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']]
columns_to_display = [col for col in columns_to_display if col in morph_df.columns]
# Mostrar el DataFrame
st.dataframe(morph_df[columns_to_display])
# Mostrar diagramas de arco (c贸digo existente)
#with st.expander(t['arc_diagram'], expanded=True):
# sentences = list(doc.sents)
# arc_diagrams = []
# for i, sent in enumerate(sentences):
# st.subheader(f"{t['sentence']} {i+1}")
# html = displacy.render(sent, style="dep", options={"distance": 100})
# html = html.replace('height="375"', 'height="200"')
# html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
# html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
# st.write(html, unsafe_allow_html=True)
# arc_diagrams.append(html)
# Mostrar diagramas de arco
with st.expander(t['arc_diagram'], expanded=True):
for i, arc_diagram in enumerate(advanced_analysis['arc_diagram']):
st.subheader(f"{t['sentence']} {i+1}")
st.write(arc_diagram, unsafe_allow_html=True)
#####################--- Funciones espec铆ficas de an谩lisis sem谩ntico --- ##############
#display_chatbot_interface(lang_code, nlp_models, t, analysis_type='semantic')
def display_semantic_analysis_interface(lang_code, nlp_models, t):
print("Iniciando display_semantic_analysis_interface")
st.write("Debug: Iniciando interfaz de an谩lisis sem谩ntico")
st.header(t['get_text']('semantic_analysis_title', 'SEMANTIC', 'Semantic Analysis'))
# Secci贸n para gestionar archivos
with st.expander("Gesti贸n de Archivos", expanded=True):
col1, col2 = st.columns(2)
with col1:
# Cargar nuevo archivo
uploaded_file = st.file_uploader(t['file_uploader'], type=['txt', 'pdf', 'docx', 'doc', 'odt'])
if uploaded_file:
file_contents = read_file_contents(uploaded_file)
if store_file_contents(st.session_state.username, uploaded_file.name, file_contents, "semantic"):
st.success(t['file_upload_success'])
st.session_state.file_contents = file_contents
st.session_state.file_name = uploaded_file.name
else:
st.error(t['file_upload_error'])
with col2:
# Lista desplegable de archivos guardados
saved_files = get_user_files(st.session_state.username, "semantic")
if saved_files:
selected_file = st.selectbox(
t['select_saved_file'],
options=[file['file_name'] for file in saved_files],
format_func=lambda x: f"{x} ({next(file['timestamp'] for file in saved_files if file['file_name'] == x)})"
)
col2_1, col2_2 = st.columns(2)
with col2_1:
if st.button(t['load_selected_file']):
file_contents = retrieve_file_contents(st.session_state.username, selected_file, "semantic")
if file_contents:
st.session_state.file_contents = file_contents
st.session_state.file_name = selected_file
st.success(t['file_loaded_success'])
else:
st.error(t['file_load_error'])
with col2_2:
if st.button(t['delete_selected_file']):
if 'file_name' in st.session_state and delete_file(st.session_state.username, st.session_state.file_name, "semantic"):
st.success(t['file_deleted_success'])
st.session_state.pop('file_contents', None)
st.session_state.pop('file_name', None)
else:
st.error(t['file_delete_error'])
# Bot贸n para analizar documento
if st.button(t['analyze_document']):
if 'file_contents' in st.session_state:
result = perform_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code)
st.session_state.semantic_result = result
if store_semantic_result(st.session_state.username, st.session_state.file_contents, result):
st.success(t['analysis_saved_success'])
else:
st.error(t['analysis_save_error'])
else:
st.warning(t['no_file_selected'])
# Interfaz principal de chat y grafo
chat_col, graph_col = st.columns([1, 1])
with chat_col:
st.subheader(t['chat_title'])
# Mostrar la interfaz de chat
display_semantic_chatbot_interface(nlp_models, lang_code, st.session_state.get('file_contents'), t)
with graph_col:
st.subheader(t['graph_title'])
if 'semantic_result' in st.session_state:
display_semantic_results(st.session_state.semantic_result, lang_code, t)
else:
st.info(t['no_analysis'])
# Mostrar el chatbot general para an谩lisis sem谩ntico
st.subheader("Chatbot de An谩lisis Sem谩ntico")
display_chatbot_interface(lang_code, nlp_models, t, analysis_type='semantic')
############################
def display_semantic_chatbot_interface(nlp_models, lang_code, file_contents, t):
# Generar una clave 煤nica para esta sesi贸n si a煤n no existe
if 'semantic_chat_input_key' not in st.session_state:
st.session_state.semantic_chat_input_key = f"semantic_chat_input_{id(st.session_state)}"
# Inicializar el historial del chat si no existe
if 'semantic_chat_history' not in st.session_state:
st.session_state.semantic_chat_history = [{"role": "assistant", "content": t['initial_message']}]
# Crear un contenedor con altura fija para el chat
chat_container = st.container()
# Mostrar el historial del chat en el contenedor
with chat_container:
# Crear un 谩rea de desplazamiento para el historial del chat
with st.empty():
chat_history = "".join([f"{'You' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}\n\n" for msg in st.session_state.semantic_chat_history])
st.text_area("Chat History", value=chat_history, height=300, key="chat_history", disabled=True)
# Usa la clave 煤nica para el chat_input
user_input = st.chat_input(t['chat_placeholder'], key=st.session_state.semantic_chat_input_key)
if user_input:
st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
try:
response, graph = handle_semantic_commands(user_input, lang_code, file_contents, nlp_models)
st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
if graph is not None:
st.session_state.semantic_graph = graph
except Exception as e:
error_message = f"Error al procesar la solicitud: {str(e)}"
st.session_state.semantic_chat_history.append({"role": "assistant", "content": error_message})
st.error(error_message)
# Bot贸n para limpiar el historial del chat
if st.button(t['clear_chat'], key=f"clear_chat_{st.session_state.semantic_chat_input_key}"):
st.session_state.semantic_chat_history = [{"role": "assistant", "content": t['initial_message']}]
############################
def display_semantic_results(result, lang_code, t):
if result is None:
st.warning(t.get('no_results', "No hay resultados disponibles."))
return
# Mostrar conceptos clave
st.subheader(t.get('key_concepts', "Conceptos Clave"))
if 'key_concepts' in result:
for concept, frequency in result['key_concepts']:
st.write(f"{concept}: {frequency}")
else:
st.warning(t.get('no_key_concepts', "No se encontraron conceptos clave."))
# Mostrar el gr谩fico de relaciones conceptuales
st.subheader(t.get('conceptual_relations', "Relaciones Conceptuales"))
if 'relations_graph' in result:
st.pyplot(result['relations_graph'])
else:
st.warning(t.get('no_graph', "No se pudo generar el gr谩fico de relaciones."))
# Mostrar el contenido completo del resultado para depuraci贸n
st.write("Contenido completo del resultado:", result)
############################
##################################### --- Funciones espec铆ficas de an谩lisis del discurso --- ##############################################################
def display_discourse_analysis_interface(nlp_models, lang_code, t):
st.header(t['get_text']('discourse_analysis_title', 'DISCOURSE', 'Discourse Analysis'))
# Mostrar la interfaz de chat
display_chatbot_interface(lang_code, nlp_models, t, analysis_type='discourse')
# Subir archivos
col1, col2 = st.columns(2)
with col1:
uploaded_file1 = st.file_uploader(t['get_text']('file_uploader1', 'DISCOURSE', 'Upload first file'), type=['txt'])
with col2:
uploaded_file2 = st.file_uploader(t['get_text']('file_uploader2', 'DISCOURSE', 'Upload second file'), type=['txt'])
if uploaded_file1 is not None and uploaded_file2 is not None:
if st.button(t['get_text']('analyze_button', 'DISCOURSE', 'Analyze')):
text_content1 = uploaded_file1.getvalue().decode('utf-8')
text_content2 = uploaded_file2.getvalue().decode('utf-8')
# Realizar el an谩lisis
analysis_result = perform_discourse_analysis(text_content1, text_content2, nlp_models[lang_code], lang_code)
# Guardar el resultado en el estado de la sesi贸n
st.session_state.discourse_result = analysis_result
# Mostrar los resultados del an谩lisis
display_discourse_results(analysis_result, lang_code, t)
# Guardar el resultado del an谩lisis
if store_discourse_analysis_result(st.session_state.username, text_content1, text_content2, analysis_result):
st.success(t['get_text']('success_message', 'DISCOURSE', 'Analysis result saved successfully'))
else:
st.error(t['get_text']('error_message', 'DISCOURSE', 'Failed to save analysis result'))
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None:
# Si hay un resultado guardado, mostrarlo
display_discourse_results(st.session_state.discourse_result, lang_code, t)
else:
st.info(t['get_text']('DISCOURSE_initial_message', 'DISCOURSE', 'Upload two files and click "Analyze" to start the discourse analysis.'))
#################################################
def display_discourse_results(result, lang_code, t):
if result is None:
st.warning(t.get('no_results', "No hay resultados disponibles."))
return
col1, col2 = st.columns(2)
with col1:
with st.expander(t.get('file_uploader1', "Documento 1"), expanded=True):
st.subheader(t.get('key_concepts', "Conceptos Clave"))
if 'key_concepts1' in result:
df1 = pd.DataFrame(result['key_concepts1'], columns=['Concepto', 'Frecuencia'])
df1['Frecuencia'] = df1['Frecuencia'].round(2)
st.table(df1)
else:
st.warning(t.get('concepts_not_available', "Los conceptos clave no est谩n disponibles."))
if 'graph1' in result:
st.pyplot(result['graph1'])
else:
st.warning(t.get('graph_not_available', "El gr谩fico no est谩 disponible."))
with col2:
with st.expander(t.get('file_uploader2', "Documento 2"), expanded=True):
st.subheader(t.get('key_concepts', "Conceptos Clave"))
if 'key_concepts2' in result:
df2 = pd.DataFrame(result['key_concepts2'], columns=['Concepto', 'Frecuencia'])
df2['Frecuencia'] = df2['Frecuencia'].round(2)
st.table(df2)
else:
st.warning(t.get('concepts_not_available', "Los conceptos clave no est谩n disponibles."))
if 'graph2' in result:
st.pyplot(result['graph2'])
else:
st.warning(t.get('graph_not_available', "El gr谩fico no est谩 disponible."))
# Relaci贸n de conceptos entre ambos documentos (Diagrama de Sankey)
st.subheader(t.get('comparison', "Relaci贸n de conceptos entre ambos documentos"))
if 'key_concepts1' in result and 'key_concepts2' in result:
df1 = pd.DataFrame(result['key_concepts1'], columns=['Concepto', 'Frecuencia'])
df2 = pd.DataFrame(result['key_concepts2'], columns=['Concepto', 'Frecuencia'])
# Crear una lista de todos los conceptos 煤nicos
all_concepts = list(set(df1['Concepto'].tolist() + df2['Concepto'].tolist()))
# Crear un diccionario de colores para cada concepto
color_scale = [f'rgb({random.randint(50,255)},{random.randint(50,255)},{random.randint(50,255)})' for _ in range(len(all_concepts))]
color_map = dict(zip(all_concepts, color_scale))
# Crear el diagrama de Sankey
source = [0] * len(df1) + list(range(2, 2 + len(df1)))
target = list(range(2, 2 + len(df1))) + [1] * len(df2)
value = list(df1['Frecuencia']) + list(df2['Frecuencia'])
node_colors = ['blue', 'red'] + [color_map[concept] for concept in df1['Concepto']] + [color_map[concept] for concept in df2['Concepto']]
link_colors = [color_map[concept] for concept in df1['Concepto']] + [color_map[concept] for concept in df2['Concepto']]
fig = go.Figure(data=[go.Sankey(
node = dict(
pad = 15,
thickness = 20,
line = dict(color = "black", width = 0.5),
label = [t.get('file_uploader1', "Documento 1"), t.get('file_uploader2', "Documento 2")] + list(df1['Concepto']) + list(df2['Concepto']),
color = node_colors
),
link = dict(
source = source,
target = target,
value = value,
color = link_colors
))])
fig.update_layout(title_text="Relaci贸n de conceptos entre documentos", font_size=10)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning(t.get('comparison_not_available', "La comparaci贸n no est谩 disponible."))
# Aqu铆 puedes agregar el c贸digo para mostrar los gr谩ficos si es necesario
##################################################################################################
#def display_saved_discourse_analysis(analysis_data):
# img_bytes = base64.b64decode(analysis_data['combined_graph'])
# img = plt.imread(io.BytesIO(img_bytes), format='png')
# st.image(img, use_column_width=True)
# st.write("Texto del documento patr贸n:")
# st.write(analysis_data['text1'])
# st.write("Texto del documento comparado:")
# st.write(analysis_data['text2'])
#################################### --- Funci贸n general de interfaz de chatbot --- ###############################################################
def display_chatbot_interface(lang_code, nlp_models, t, analysis_type='morphosyntactic'):
# Verificar que todos los argumentos necesarios est茅n presentes
if not all([lang_code, nlp_models, t]):
st.error("Missing required arguments in display_chatbot_interface")
return
valid_types = ['morphosyntactic', 'semantic', 'discourse']
if analysis_type not in valid_types:
raise ValueError(f"Invalid analysis_type. Must be one of {valid_types}")
logger.debug(f"Displaying chatbot interface for {analysis_type} analysis")
# Obtener el mensaje inicial del diccionario de traducciones
initial_message = t['get_text'](f'initial_message', analysis_type.upper(), "Mensaje inicial no encontrado")
chat_key = f'{analysis_type}_messages'
if chat_key not in st.session_state or not st.session_state[chat_key]:
st.session_state[chat_key] = [{"role": "assistant", "content": initial_message, "visualizations": []}]
elif st.session_state[chat_key][0]['content'] != initial_message:
st.session_state[chat_key][0] = {"role": "assistant", "content": initial_message, "visualizations": []}
# Contenedor para el chat
chat_container = st.container()
# Mostrar el historial del chat
with chat_container:
for message in st.session_state[chat_key]:
with st.chat_message(message["role"]):
st.write(message["content"])
for i, visualization in enumerate(message.get("visualizations", [])):
if visualization:
if analysis_type == 'morphosyntactic':
st.subheader(f"{t['get_text']('sentence', 'COMMON', 'Oraci贸n')} {i+1}")
st.components.v1.html(visualization, height=450, scrolling=True)
elif analysis_type in ['semantic', 'discourse']:
st.pyplot(visualization)
# Input del usuario
chat_input_key = f"chat_input_{analysis_type}_{lang_code}"
user_input = st.chat_input(
t['get_text']('input_placeholder', analysis_type.upper(), 'Ingrese su mensaje aqu铆...'),
key=chat_input_key
)
if user_input:
st.session_state[chat_key].append({"role": "user", "content": user_input, "visualizations": []})
try:
# Procesar la entrada del usuario
response, visualizations = process_chat_input(user_input, lang_code, nlp_models, analysis_type, t)
st.session_state[chat_key].append({"role": "assistant", "content": response, "visualizations": visualizations})
st.experimental_rerun()
except Exception as e:
error_message = t['get_text']('error_message', 'COMMON', f"Lo siento, ocurri贸 un error: {str(e)}")
st.error(error_message)
st.session_state[chat_key].append({"role": "assistant", "content": error_message, "visualizations": []})
# L贸gica espec铆fica para cada tipo de an谩lisis
uploaded_file = None # Inicializar uploaded_file a None
if analysis_type in ['semantic', 'discourse']:
file_key = f"{analysis_type}_file_uploader_{lang_code}"
if analysis_type == 'discourse':
# Para el an谩lisis del discurso, necesitamos dos archivos
uploaded_file1 = st.file_uploader(
t['get_text']('file_uploader1', 'DISCOURSE', 'Upload first file'),
type=['txt', 'pdf', 'docx', 'doc', 'odt'],
key=f"{file_key}_1"
)
uploaded_file2 = st.file_uploader(
t['get_text']('file_uploader2', 'DISCOURSE', 'Upload second file'),
type=['txt', 'pdf', 'docx', 'doc', 'odt'],
key=f"{file_key}_2"
)
uploaded_file = (uploaded_file1, uploaded_file2)
else:
uploaded_file = st.file_uploader(
t['get_text']('file_uploader', analysis_type.upper(), 'Upload a file'),
type=['txt', 'pdf', 'docx', 'doc', 'odt'],
key=file_key
)
if uploaded_file:
if analysis_type == 'discourse':
if uploaded_file[0] and uploaded_file[1]:
file_contents1 = read_file_contents(uploaded_file[0])
file_contents2 = read_file_contents(uploaded_file[1])
if st.button(t['get_text']('analyze_button', 'DISCOURSE', 'Analyze')):
result = perform_discourse_analysis(file_contents1, file_contents2, nlp_models[lang_code], lang_code)
result = {'type': 'discourse', 'result': result}
st.session_state['discourse_result'] = result
display_analysis_results(result, lang_code, t)
else:
file_contents = read_file_contents(uploaded_file)
if st.button(t['get_text']('analyze_button', analysis_type.upper(), 'Analyze')):
if analysis_type == 'semantic':
result = perform_semantic_analysis(file_contents, nlp_models[lang_code], lang_code)
result = {'type': 'semantic', 'result': result}
st.session_state[f'{analysis_type}_result'] = result
display_analysis_results(result, lang_code, t)
def process_chat_input(user_input, lang_code, nlp_models, analysis_type, t, file_contents=None):
chatbot_key = f'{analysis_type}_chatbot'
if chatbot_key not in st.session_state:
st.session_state[chatbot_key] = initialize_chatbot(analysis_type)
chatbot = st.session_state[chatbot_key]
if analysis_type == 'morphosyntactic':
response = chatbot.process_input(user_input, lang_code, nlp_models, t)
visualizations = []
if user_input.startswith('/analisis_morfosintactico') or user_input.startswith('/morphosyntactic_analysis') or user_input.startswith('/analyse_morphosyntaxique'):
result = perform_advanced_morphosyntactic_analysis(user_input.split(' ', 1)[1].strip('[]'), nlp_models[lang_code])
visualizations = result.get('arc_diagram', [])
return response, visualizations
elif analysis_type == 'semantic':
response, graph = chatbot.process_input(user_input, lang_code, nlp_models[lang_code], file_contents, t)
return response, [graph] if graph else []
elif analysis_type == 'discourse':
response = chatbot.process_input(user_input, lang_code, nlp_models, t)
visualizations = []
if user_input.startswith('/analisis_discurso') or user_input.startswith('/discourse_analysis') or user_input.startswith('/analyse_discours'):
texts = user_input.split(' ', 1)[1].split('|')
if len(texts) == 2:
result = perform_discourse_analysis(texts[0].strip(), texts[1].strip(), nlp_models[lang_code], lang_code)
visualizations = [result.get('graph1'), result.get('graph2'), result.get('combined_graph')]
return response, visualizations
else:
raise ValueError(f"Invalid analysis_type: {analysis_type}")
######################################################
if __name__ == "__main__":
main()