v3 / modules /ui /ui_backUp_13-9-2024.py
AIdeaText's picture
Upload 216 files
c58df45 verified
raw
history blame
76.1 kB
# Importaciones generales
import streamlit as st
import re
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import time
from datetime import datetime
from streamlit_player import st_player # Necesitarás instalar esta librería: pip install streamlit-player
from spacy import displacy
import logging
import random
######################################################
# Configuración del logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
######################################################
# Importaciones locales
from ..email.email import send_email_notification
######################################################
# Importaciones locales de autenticación y base de datos
from ..auth.auth import (
authenticate_user,
register_user
)
######################################################
from ..database.database_oldFromV2 import (
get_student_data,
store_application_request,
store_morphosyntax_result,
store_semantic_result,
store_discourse_analysis_result,
store_chat_history,
create_admin_user,
create_student_user,
store_user_feedback,
export_analysis_and_chat
)
######################################################
# Importaciones locales de uiadmin
from ..admin.admin_ui import admin_page
######################################################
# Importaciones locales funciones de análisis
from ..text_analysis.morpho_analysis import (
generate_arc_diagram,
get_repeated_words_colors,
highlight_repeated_words,
POS_COLORS,
POS_TRANSLATIONS,
perform_advanced_morphosyntactic_analysis
)
######################################################
from ..text_analysis.semantic_analysis import (
#visualize_semantic_relations,
perform_semantic_analysis,
create_concept_graph,
visualize_concept_graph
)
######################################################
from ..text_analysis.discourse_analysis import (
perform_discourse_analysis,
display_discourse_analysis_results
)
######################################################
from ..chatbot.chatbot import (
initialize_chatbot,
get_chatbot_response,
process_chat_input,
TEXT_TYPES
)
##################################################################################################
def initialize_session_state():
if 'initialized' not in st.session_state:
st.session_state.clear()
st.session_state.initialized = True
st.session_state.logged_in = False
st.session_state.page = 'login'
st.session_state.username = None
st.session_state.role = None
##################################################################################################
def main():
initialize_session_state()
print(f"Página actual: {st.session_state.page}")
print(f"Rol del usuario: {st.session_state.role}")
if st.session_state.page == 'login':
login_register_page()
elif st.session_state.page == 'admin':
print("Intentando mostrar página de admin")
admin_page()
elif st.session_state.page == 'user':
user_page()
else:
print(f"Página no reconocida: {st.session_state.page}")
print(f"Estado final de la sesión: {st.session_state}")
##################################################################################################
def login_register_page():
st.title("AIdeaText")
left_column, right_column = st.columns([1, 3])
with left_column:
tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"])
with tab1:
login_form()
with tab2:
register_form()
with right_column:
display_videos_and_info()
##################################################################################################
def login_form():
username = st.text_input("Correo electrónico", key="login_username")
password = st.text_input("Contraseña", type="password", key="login_password")
if st.button("Iniciar Sesión", key="login_button"):
success, role = authenticate_user(username, password)
if success:
st.session_state.logged_in = True
st.session_state.username = username
st.session_state.role = role
st.session_state.page = 'admin' if role == 'Administrador' else 'user'
print(f"Inicio de sesión exitoso. Usuario: {username}, Rol: {role}")
print(f"Estado de sesión después de login: {st.session_state}")
st.rerun()
else:
st.error("Credenciales incorrectas")
##################################################################################################
def admin_page():
st.title("Panel de Administración")
st.write(f"Bienvenida, {st.session_state.username}")
st.header("Crear Nuevo Usuario Estudiante")
new_username = st.text_input("Correo electrónico del nuevo usuario", key="admin_new_username")
new_password = st.text_input("Contraseña", type="password", key="admin_new_password")
if st.button("Crear Usuario", key="admin_create_user"):
if create_student_user(new_username, new_password):
st.success(f"Usuario estudiante {new_username} creado exitosamente")
else:
st.error("Error al crear el usuario estudiante")
# Aquí puedes añadir más funcionalidades para el panel de administración
##################################################################################################
def user_page():
# Asumimos que el idioma seleccionado está almacenado en st.session_state.lang_code
# Si no está definido, usamos 'es' como valor predeterminado
lang_code = st.session_state.get('lang_code', 'es')
translations = {
'es': {
'welcome': "Bienvenido a AIdeaText",
'hello': "Hola",
'chat_title': "Chat de Análisis",
'results_title': "Resultados del Análisis",
'export_button': "Exportar Análisis Actual",
'no_analysis': "No hay análisis disponible. Utiliza el chat para realizar un análisis.",
'export_success': "Análisis y chat exportados correctamente.",
'export_error': "Hubo un problema al exportar el análisis y el chat.",
'nothing_to_export': "No hay análisis o chat para exportar."
},
'en': {
'welcome': "Welcome to AIdeaText",
'hello': "Hello",
'chat_title': "Analysis Chat",
'results_title': "Analysis Results",
'export_button': "Export Current Analysis",
'no_analysis': "No analysis available. Use the chat to perform an analysis.",
'export_success': "Analysis and chat exported successfully.",
'export_error': "There was a problem exporting the analysis and chat.",
'nothing_to_export': "No analysis or chat to export."
},
'fr': {
'welcome': "Bienvenue à AIdeaText",
'hello': "Bonjour",
'chat_title': "Chat d'Analyse",
'results_title': "Résultats de l'Analyse",
'export_button': "Exporter l'Analyse Actuelle",
'no_analysis': "Aucune analyse disponible. Utilisez le chat pour effectuer une analyse.",
'export_success': "Analyse et chat exportés avec succès.",
'export_error': "Un problème est survenu lors de l'exportation de l'analyse et du chat.",
'nothing_to_export': "Aucune analyse ou chat à exporter."
}
}
t = translations[lang_code]
st.title(t['welcome'])
st.write(f"{t['hello']}, {st.session_state.username}")
# Dividir la pantalla en dos columnas
col1, col2 = st.columns(2)
with col1:
st.subheader(t['chat_title'])
display_chatbot_interface(lang_code)
with col2:
st.subheader(t['results_title'])
if 'current_analysis' in st.session_state and st.session_state.current_analysis is not None:
display_analysis_results(st.session_state.current_analysis, lang_code)
if st.button(t['export_button']):
if export_analysis_and_chat(st.session_state.username, st.session_state.current_analysis, st.session_state.messages):
st.success(t['export_success'])
else:
st.error(t['export_error'])
else:
st.info(t['no_analysis'])
##################################################################################################
def display_analysis_results(analysis, lang_code):
translations = {
'es': {
'morphosyntactic_title': "Análisis Morfosintáctico",
'semantic_title': "Análisis Semántico",
'discourse_title': "Análisis del Discurso",
'no_analysis': "No hay análisis disponible.",
'legend': "Leyenda: Categorías gramaticales",
'repeated_words': "Palabras repetidas",
'sentence_structure': "Estructura de oraciones",
'repeated_words': "Palabras repetidas",
'pos_analysis': "Análisis de categorías gramaticales",
'morphological_analysis': "Análisis morfológico",
'arc_diagram': "Análisis sintáctico: Diagrama de arco",
'sentence': "Oración",
'root': "Raíz",
'subjects': "Sujetos",
'objects': "Objetos",
'verbs': "Verbos",
'success_message': "Análisis guardado correctamente.", #categorias adicionales
'error_message': "Hubo un problema al guardar el análisis. Por favor, inténtelo de nuevo.", #categorias adicionales
'warning_message': "Por favor, ingrese un texto para analizar.", #categorias adicionales
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.", #categorias adicionales
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.", #categorias adicionales
'word': "Palabra", #categorias adicionales
'count': "Cantidad", #categorias adicionales
'percentage': "Porcentaje", #categorias adicionales
'examples': "Ejemplos", #categorias adicionales
'lemma': "Lema", #categorias adicionales
'tag': "Etiqueta", #categorias adicionales
'dep': "Dependencia", #categorias adicionales
'morph': "Morfología", #categorias adicionales
'grammatical_category': "Categoría gramatical", #categorias adicionales
'dependency': "Dependencia", #categorias adicionales
'morphology': "Morfología", #categorias adicionales
'conceptual_relations': "Relaciones Conceptuales",
'identified_entities': "Entidades Identificadas",
'key_concepts': "Conceptos Clave",
'success_message': "Análisis semántico guardado correctamente.",
'error_message': "Hubo un problema al guardar el análisis semántico. Por favor, inténtelo de nuevo.",
'warning_message': "Por favor, ingrese un texto o cargue un archivo para analizar.",
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.",
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.",
'comparison': "Comparación de Relaciones Semánticas",
'success_message': "Análisis del discurso guardado correctamente.",
'error_message': "Hubo un problema al guardar el análisis del discurso. Por favor, inténtelo de nuevo.",
'warning_message': "Por favor, cargue ambos archivos para analizar.",
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.",
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.",
'key_concepts': "Conceptos Clave",
'graph_not_available': "El gráfico no está disponible.",
'concepts_not_available': "Los conceptos clave no están disponibles.",
'comparison_not_available': "La comparación no está disponible."
},
'en': {
'morphosyntactic_title': "Morphosyntactic Analysis",
'semantic_title': "Semantic Analysis",
'discourse_title': "Discourse Analysis",
'no_analysis': "No analysis available.",
'legend': "Legend: Grammatical categories",
'sentence_structure': "Sentence Structure",
'repeated_words': "Repeated words",
'pos_analysis': "Part of Speech Analysis",
'morphological_analysis': "Morphological Analysis",
'arc_diagram': "Syntactic analysis: Arc diagram",
'sentence': "Sentence",
'root': "Root",
'subjects': "Subjects",
'objects': "Objects",
'verbs': "Verbs",
'success_message': "Analysis saved successfully.",
'error_message': "There was a problem saving the analysis. Please try again.",
'warning_message': "Please enter a text to analyze.",
'initial_message': "Enter a text and press 'Analyze text' to start.",
'no_results': "No results available. Please perform an analysis first.",
'word': "Word",
'count': "Count",
'percentage': "Percentage",
'examples': "Examples",
'lemma': "Lemma",
'tag': "Tag",
'dep': "Dependency",
'morph': "Morphology",
'grammatical_category': "Grammatical category",
'dependency': "Dependency",
'morphology': "Morphology",
'conceptual_relations': "Conceptual Relations",
'identified_entities': "Identified Entities",
'key_concepts': "Key Concepts",
'success_message': "Semantic analysis saved successfully.",
'error_message': "There was a problem saving the semantic analysis. Please try again.",
'warning_message': "Please enter a text or upload a file to analyze.",
'initial_message': "Enter a text and press 'Analyze text' to start.",
'no_results': "No results available. Please perform an analysis first.",
'comparison': "Comparison of Semantic Relations",
'success_message': "Discourse analysis saved successfully.",
'error_message': "There was a problem saving the discourse analysis. Please try again.",
'warning_message': "Please upload both files to analyze.",
'initial_message': "Enter a text and press 'Analyze text' to start.",
'no_results': "No results available. Please perform an analysis first.",
'key_concepts': "Key Concepts",
'graph_not_available': "The graph is not available.",
'concepts_not_available': "Key concepts are not available.",
'comparison_not_available': "The comparison is not available."
},
'fr': {
'morphosyntactic_title': "Analyse Morphosyntaxique",
'semantic_title': "Analyse Sémantique",
'discourse_title': "Analyse du Discours",
'no_analysis': "Aucune analyse disponible.",
'legend': "Légende : Catégories grammaticales",
'sentence_structure': "Structure des phrases",
'repeated_words': "Mots répétés",
'pos_analysis': "Analyse des parties du discours",
'morphological_analysis': "Analyse morphologique",
'arc_diagram': "Analyse syntaxique : Diagramme en arc",
'sentence': "Phrase",
'root': "Racine",
'subjects': "Sujets",
'objects': "Objets",
'verbs': "Verbes",
'success_message': "Analyse enregistrée avec succès.",
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse. Veuillez réessayer.",
'warning_message': "Veuillez entrer un texte à analyser.",
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.",
'word': "Mot",
'count': "Nombre",
'percentage': "Pourcentage",
'examples': "Exemples",
'lemma': "Lemme",
'tag': "Étiquette",
'dep': "Dépendance",
'morph': "Morphologie",
'grammatical_category': "Catégorie grammaticale",
'dependency': "Dépendance",
'morphology': "Morphologie",
'conceptual_relations': "Relations Conceptuelles",
'identified_entities': "Entités Identifiées",
'key_concepts': "Concepts Clés",
'success_message': "Analyse sémantique enregistrée avec succès.",
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse sémantique. Veuillez réessayer.",
'warning_message': "Veuillez entrer un texte ou télécharger un fichier à analyser.",
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.",
'comparison': "Comparaison des Relations Sémantiques",
'success_message': "Analyse du discours enregistrée avec succès.",
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse du discours. Veuillez réessayer.",
'warning_message': "Veuillez télécharger les deux fichiers à analyser.",
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.",
'key_concepts': "Concepts Clés",
'graph_not_available': "Le graphique n'est pas disponible.",
'concepts_not_available': "Les concepts clés ne sont pas disponibles.",
'comparison_not_available': "La comparaison n'est pas disponible."
}
}
t = translations[lang_code]
if analysis is None:
st.warning(t['no_analysis'])
return
if analysis['type'] == 'morphosyntactic':
st.subheader(t['morphosyntactic_title'])
display_morphosyntax_results(analysis['result'], lang_code, t)
elif analysis['type'] == 'semantic':
st.subheader(t['semantic_title'])
display_semantic_results(analysis['result'], lang_code, t)
elif analysis['type'] == 'discourse':
st.subheader(t['discourse_title'])
display_discourse_results(analysis['result'], lang_code, t)
else:
st.warning(t['no_analysis'])
##################################################################################################
def display_videos_and_info():
st.header("Videos: pitch, demos, entrevistas, otros")
videos = {
"Presentación en PyCon Colombia, Medellín, 2024": "https://www.youtube.com/watch?v=Jn545-IKx5Q",
"Presentación fundación Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164",
"Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s",
"Entrevista Dr. Guillermo Ruíz": "https://www.youtube.com/watch?v=_ch8cRja3oc",
"Demo versión desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY"
}
selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys()))
if selected_title in videos:
try:
st_player(videos[selected_title])
except Exception as e:
st.error(f"Error al cargar el video: {str(e)}")
st.markdown("""
## Novedades de la versión actual
- Nueva función de análisis semántico
- Soporte para múltiples idiomas
- Interfaz mejorada para una mejor experiencia de usuario
""")
##################################################################################################
def register_form():
st.header("Solicitar prueba de la aplicación")
name = st.text_input("Nombre completo")
email = st.text_input("Correo electrónico institucional")
institution = st.text_input("Institución")
role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"])
reason = st.text_area("¿Por qué estás interesado en probar AIdeaText?")
if st.button("Enviar solicitud"):
logger.info(f"Attempting to submit application for {email}")
logger.debug(f"Form data: name={name}, email={email}, institution={institution}, role={role}, reason={reason}")
if not name or not email or not institution or not reason:
logger.warning("Incomplete form submission")
st.error("Por favor, completa todos los campos.")
elif not is_institutional_email(email):
logger.warning(f"Non-institutional email used: {email}")
st.error("Por favor, utiliza un correo electrónico institucional.")
else:
logger.info(f"Attempting to store application for {email}")
success = store_application_request(name, email, institution, role, reason)
if success:
st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.")
logger.info(f"Application request stored successfully for {email}")
else:
st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.")
logger.error(f"Failed to store application request for {email}")
################################################################################
def display_feedback_form(lang_code):
logging.info(f"display_feedback_form called with lang_code: {lang_code}")
translations = {
'es': {
'title': "Formulario de Retroalimentación",
'name': "Nombre",
'email': "Correo electrónico",
'feedback': "Tu retroalimentación",
'submit': "Enviar",
'success': "¡Gracias por tu retroalimentación!",
'error': "Hubo un problema al enviar el formulario. Por favor, intenta de nuevo."
},
'en': {
'title': "Feedback Form",
'name': "Name",
'email': "Email",
'feedback': "Your feedback",
'submit': "Submit",
'success': "Thank you for your feedback!",
'error': "There was a problem submitting the form. Please try again."
},
'fr': {
'title': "Formulaire de Rétroaction",
'name': "Nom",
'email': "Adresse e-mail",
'feedback': "Votre rétroaction",
'submit': "Envoyer",
'success': "Merci pour votre rétroaction !",
'error': "Un problème est survenu lors de l'envoi du formulaire. Veuillez réessayer."
}
}
t = translations[lang_code]
st.header(t['title'])
name = st.text_input(t['name'], key=f"feedback_name_{lang_code}")
email = st.text_input(t['email'], key=f"feedback_email_{lang_code}")
feedback = st.text_area(t['feedback'], key=f"feedback_text_{lang_code}")
if st.button(t['submit'], key=f"feedback_submit_{lang_code}"):
if name and email and feedback:
if store_user_feedback(st.session_state.username, name, email, feedback):
st.success(t['success'])
else:
st.error(t['error'])
else:
st.warning("Por favor, completa todos los campos.")
################################################################################
def is_institutional_email(email):
forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com']
return not any(domain in email.lower() for domain in forbidden_domains)
################################################################################
def display_student_progress(username, lang_code='es'):
student_data = get_student_data(username)
if student_data is None or len(student_data['entries']) == 0:
st.warning("No se encontraron datos para este estudiante.")
st.info("Intenta realizar algunos análisis de texto primero.")
return
st.title(f"Progreso de {username}")
with st.expander("Resumen de Actividades y Progreso", expanded=True):
# Resumen de actividades
total_entries = len(student_data['entries'])
st.write(f"Total de análisis realizados: {total_entries}")
# Gráfico de tipos de análisis
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
analysis_counts = pd.Series(analysis_types).value_counts()
fig, ax = plt.subplots()
analysis_counts.plot(kind='bar', ax=ax)
ax.set_title("Tipos de análisis realizados")
ax.set_xlabel("Tipo de análisis")
ax.set_ylabel("Cantidad")
st.pyplot(fig)
# Progreso a lo largo del tiempo
dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']]
analysis_counts = pd.Series(dates).value_counts().sort_index()
fig, ax = plt.subplots()
analysis_counts.plot(kind='line', ax=ax)
ax.set_title("Análisis realizados a lo largo del tiempo")
ax.set_xlabel("Fecha")
ax.set_ylabel("Cantidad de análisis")
st.pyplot(fig)
##########################################################
with st.expander("Histórico de Análisis Morfosintácticos"):
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
for entry in morphosyntax_entries:
st.subheader(f"Análisis del {entry['timestamp']}")
if entry['arc_diagrams']:
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
##########################################################
with st.expander("Histórico de Análisis Semánticos"):
semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
for entry in semantic_entries:
st.subheader(f"Análisis del {entry['timestamp']}")
# Mostrar conceptos clave
if 'key_concepts' in entry:
st.write("Conceptos clave:")
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
#st.write("Conceptos clave:")
#st.write(concepts_str)
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True)
# Mostrar gráfico
if 'graph' in entry:
try:
img_bytes = base64.b64decode(entry['graph'])
st.image(img_bytes, caption="Gráfico de relaciones conceptuales")
except Exception as e:
st.error(f"No se pudo mostrar el gráfico: {str(e)}")
##########################################################
with st.expander("Histórico de Análisis Discursivos"):
discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
for entry in discourse_entries:
st.subheader(f"Análisis del {entry['timestamp']}")
# Mostrar conceptos clave para ambos documentos
if 'key_concepts1' in entry:
concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']])
st.write("Conceptos clave del documento 1:")
#st.write(concepts_str1)
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str1}</div>", unsafe_allow_html=True)
if 'key_concepts2' in entry:
concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']])
st.write("Conceptos clave del documento 2:")
#st.write(concepts_str2)
st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str2}</div>", unsafe_allow_html=True)
try:
if 'combined_graph' in entry and entry['combined_graph']:
img_bytes = base64.b64decode(entry['combined_graph'])
st.image(img_bytes)
elif 'graph1' in entry and 'graph2' in entry:
col1, col2 = st.columns(2)
with col1:
if entry['graph1']:
img_bytes1 = base64.b64decode(entry['graph1'])
st.image(img_bytes1)
with col2:
if entry['graph2']:
img_bytes2 = base64.b64decode(entry['graph2'])
st.image(img_bytes2)
else:
st.write("No se encontraron gráficos para este análisis.")
except Exception as e:
st.error(f"No se pudieron mostrar los gráficos: {str(e)}")
st.write("Datos de los gráficos (para depuración):")
if 'graph1' in entry:
st.write("Graph 1:", entry['graph1'][:100] + "...")
if 'graph2' in entry:
st.write("Graph 2:", entry['graph2'][:100] + "...")
if 'combined_graph' in entry:
st.write("Combined Graph:", entry['combined_graph'][:100] + "...")
##########################################################
with st.expander("Histórico de Conversaciones con el ChatBot"):
if 'chat_history' in student_data:
for i, chat in enumerate(student_data['chat_history']):
st.subheader(f"Conversación {i+1} - {chat['timestamp']}")
for message in chat['messages']:
if message['role'] == 'user':
st.write("Usuario: " + message['content'])
else:
st.write("Asistente: " + message['content'])
st.write("---")
else:
st.write("No se encontraron conversaciones con el ChatBot.")
# Añadir logs para depuración
if st.checkbox("Mostrar datos de depuración"):
st.write("Datos del estudiante (para depuración):")
st.json(student_data)
##################################################################################################
def display_morphosyntax_analysis_interface(nlp_models, lang_code):
translations = {
'es': {
'title': "AIdeaText - Análisis morfológico y sintáctico",
'input_label': "Ingrese un texto para analizar (máximo 5,000 palabras",
'input_placeholder': "Esta funcionalidad le ayudará con dos competencias:\n"
"[1] \"Escribe diversos tipos de textos en su lengua materna\"\n"
"[2] \"Lee diversos tipos de textos escritos en su lengua materna\"\n\n"
"Ingrese su texto aquí para analizar...",
'analyze_button': "Analizar texto",
'repeated_words': "Palabras repetidas",
'legend': "Leyenda: Categorías gramaticales",
'arc_diagram': "Análisis sintáctico: Diagrama de arco",
'sentence': "Oración",
'success_message': "Análisis guardado correctamente.",
'error_message': "Hubo un problema al guardar el análisis. Por favor, inténtelo de nuevo.",
'warning_message': "Por favor, ingrese un texto para analizar.",
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.",
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.",
'pos_analysis': "Análisis de categorías gramaticales",
'morphological_analysis': "Análisis morfológico",
'sentence_structure': "Estructura de oraciones",
'word': "Palabra",
'count': "Cantidad",
'percentage': "Porcentaje",
'examples': "Ejemplos",
'lemma': "Lema",
'tag': "Etiqueta",
'dep': "Dependencia",
'morph': "Morfología",
'root': "Raíz",
'subjects': "Sujetos",
'objects': "Objetos",
'verbs': "Verbos",
'grammatical_category': "Categoría gramatical",
'dependency': "Dependencia",
'morphology': "Morfología"
},
'en': {
'title': "AIdeaText - Morphological and Syntactic Analysis",
'input_label': "Enter a text to analyze (max 5,000 words):",
'input_placeholder': "This functionality will help you with two competencies:\n"
"[1] \"Write various types of texts in your native language\"\n"
"[2] \"Read various types of written texts in your native language\"\n\n"
"Enter your text here to analyze...",
'analyze_button': "Analyze text",
'repeated_words': "Repeated words",
'legend': "Legend: Grammatical categories",
'arc_diagram': "Syntactic analysis: Arc diagram",
'sentence': "Sentence",
'success_message': "Analysis saved successfully.",
'error_message': "There was a problem saving the analysis. Please try again.",
'warning_message': "Please enter a text to analyze.",
'initial_message': "Enter a text and press 'Analyze text' to start.",
'no_results': "No results available. Please perform an analysis first.",
'pos_analysis': "Part of Speech Analysis",
'morphological_analysis': "Morphological Analysis",
'sentence_structure': "Sentence Structure",
'word': "Word",
'count': "Count",
'percentage': "Percentage",
'examples': "Examples",
'lemma': "Lemma",
'tag': "Tag",
'dep': "Dependency",
'morph': "Morphology",
'root': "Root",
'subjects': "Subjects",
'objects': "Objects",
'verbs': "Verbs",
'grammatical_category': "Grammatical category",
'dependency': "Dependency",
'morphology': "Morphology"
},
'fr': {
'title': "AIdeaText - Analyse morphologique et syntaxique",
'input_label': "Entrez un texte à analyser (max 5 000 mots) :",
'input_placeholder': "Cette fonctionnalité vous aidera avec deux compétences :\n"
"[1] \"Écrire divers types de textes dans votre langue maternelle\"\n"
"[2] \"Lire divers types de textes écrits dans votre langue maternelle\"\n\n"
"Entrez votre texte ici pour l'analyser...",
'analyze_button': "Analyser le texte",
'repeated_words': "Mots répétés",
'legend': "Légende : Catégories grammaticales",
'arc_diagram': "Analyse syntaxique : Diagramme en arc",
'sentence': "Phrase",
'success_message': "Analyse enregistrée avec succès.",
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse. Veuillez réessayer.",
'warning_message': "Veuillez entrer un texte à analyser.",
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.",
'pos_analysis': "Analyse des parties du discours",
'morphological_analysis': "Analyse morphologique",
'sentence_structure': "Structure des phrases",
'word': "Mot",
'count': "Nombre",
'percentage': "Pourcentage",
'examples': "Exemples",
'lemma': "Lemme",
'tag': "Étiquette",
'dep': "Dépendance",
'morph': "Morphologie",
'root': "Racine",
'subjects': "Sujets",
'objects': "Objets",
'verbs': "Verbes",
'grammatical_category': "Catégorie grammaticale",
'dependency': "Dépendance",
'morphology': "Morphologie"
}
}
t = translations[lang_code]
input_key = f"morphosyntax_input_{lang_code}"
if input_key not in st.session_state:
st.session_state[input_key] = ""
sentence_input = st.text_area(
t['input_label'],
height=150,
placeholder=t['input_placeholder'],
value=st.session_state[input_key],
key=f"text_area_{lang_code}",
on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"])
)
if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"):
current_input = st.session_state[input_key]
if current_input:
doc = nlp_models[lang_code](current_input)
# Análisis morfosintáctico avanzado
advanced_analysis = perform_advanced_morphosyntactic_analysis(current_input, nlp_models[lang_code])
# Guardar el resultado en el estado de la sesión
st.session_state.morphosyntax_result = {
'doc': doc,
'advanced_analysis': advanced_analysis
}
# Mostrar resultados
display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t)
# Guardar resultados
if store_morphosyntax_result(
st.session_state.username,
current_input,
get_repeated_words_colors(doc),
advanced_analysis['arc_diagram'],
advanced_analysis['pos_analysis'],
advanced_analysis['morphological_analysis'],
advanced_analysis['sentence_structure']
):
st.success(t['success_message'])
else:
st.error(t['error_message'])
else:
st.warning(t['warning_message'])
elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None:
# Si hay un resultado guardado, mostrarlo
display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t)
else:
st.info(t['initial_message']) # Añade esta traducción a tu diccionario
#################################################################################################
#################################################################################################
def display_morphosyntax_results(result, lang_code, t):
if result is None:
st.warning(t['no_results']) # Añade esta traducción a tu diccionario
return
# doc = result['doc']
# advanced_analysis = result['advanced_analysis']
advanced_analysis = result
# Mostrar leyenda (código existente)
st.markdown(f"##### {t['legend']}")
legend_html = "<div style='display: flex; flex-wrap: wrap;'>"
for pos, color in POS_COLORS.items():
if pos in POS_TRANSLATIONS[lang_code]:
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>"
legend_html += "</div>"
st.markdown(legend_html, unsafe_allow_html=True)
# Mostrar análisis de palabras repetidas (código existente)
if 'repeated_words' in advanced_analysis:
with st.expander(t['repeated_words'], expanded=True):
st.markdown(advanced_analysis['repeated_words'], unsafe_allow_html=True)
# Mostrar estructura de oraciones
if 'sentence_structure' in advanced_analysis:
with st.expander(t['sentence_structure'], expanded=True):
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']):
sentence_str = (
f"**{t['sentence']} {i+1}** "
f"{t['root']}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- "
f"{t['subjects']}: {', '.join(sent_analysis['subjects'])} -- "
f"{t['objects']}: {', '.join(sent_analysis['objects'])} -- "
f"{t['verbs']}: {', '.join(sent_analysis['verbs'])}"
)
st.markdown(sentence_str)
else:
st.warning("No se encontró información sobre la estructura de las oraciones.")
# Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico
col1, col2 = st.columns(2)
with col1:
with st.expander(t['pos_analysis'], expanded=True):
pos_df = pd.DataFrame(advanced_analysis['pos_analysis'])
# Traducir las etiquetas POS a sus nombres en el idioma seleccionado
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
# Renombrar las columnas para mayor claridad
pos_df = pos_df.rename(columns={
'pos': t['grammatical_category'],
'count': t['count'],
'percentage': t['percentage'],
'examples': t['examples']
})
# Mostrar el dataframe
st.dataframe(pos_df)
with col2:
with st.expander(t['morphological_analysis'], expanded=True):
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis'])
# Definir el mapeo de columnas
column_mapping = {
'text': t['word'],
'lemma': t['lemma'],
'pos': t['grammatical_category'],
'dep': t['dependency'],
'morph': t['morphology']
}
# Renombrar las columnas existentes
morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns})
# Traducir las categorías gramaticales
morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
# Traducir las dependencias
dep_translations = {
'es': {
'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto',
'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto',
'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado',
'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso',
'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal',
'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva',
'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador',
'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo',
'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis',
'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación'
},
'en': {
'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object',
'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement',
'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier',
'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker',
'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun',
'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking',
'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression',
'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan',
'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation'
},
'fr': {
'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect',
'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique',
'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial',
'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal',
'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant',
'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée',
'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin',
'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation'
}
}
morph_df[t['dependency']] = morph_df[t['dependency']].map(lambda x: dep_translations[lang_code].get(x, x))
# Traducir la morfología
def translate_morph(morph_string, lang_code):
morph_translations = {
'es': {
'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido',
'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo',
'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz',
'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural',
'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo',
'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado',
'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto'
},
'en': {
'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person',
'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice',
'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative',
'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle',
'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect'
},
'fr': {
'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom',
'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix',
'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif',
'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe',
'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait'
}
}
for key, value in morph_translations[lang_code].items():
morph_string = morph_string.replace(key, value)
return morph_string
morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code))
# Seleccionar y ordenar las columnas a mostrar
columns_to_display = [t['word'], t['lemma'], t['grammatical_category'], t['dependency'], t['morphology']]
columns_to_display = [col for col in columns_to_display if col in morph_df.columns]
# Mostrar el DataFrame
st.dataframe(morph_df[columns_to_display])
# Mostrar diagramas de arco (código existente)
#with st.expander(t['arc_diagram'], expanded=True):
# sentences = list(doc.sents)
# arc_diagrams = []
# for i, sent in enumerate(sentences):
# st.subheader(f"{t['sentence']} {i+1}")
# html = displacy.render(sent, style="dep", options={"distance": 100})
# html = html.replace('height="375"', 'height="200"')
# html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
# html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
# st.write(html, unsafe_allow_html=True)
# arc_diagrams.append(html)
# Mostrar diagramas de arco
with st.expander(t['arc_diagram'], expanded=True):
for i, arc_diagram in enumerate(advanced_analysis['arc_diagram']):
st.subheader(f"{t['sentence']} {i+1}")
st.write(arc_diagram, unsafe_allow_html=True)
###############################################################################################################
def display_semantic_analysis_interface(nlp_models, lang_code):
translations = {
'es': {
'title': "AIdeaText - Análisis semántico",
'text_input_label': "Ingrese un texto para analizar (máx. 5,000 palabras):",
'text_input_placeholder': "El objetivo de esta aplicación es que mejore sus habilidades de redacción...",
'file_uploader': "O cargue un archivo de texto",
'analyze_button': "Analizar texto",
'conceptual_relations': "Relaciones Conceptuales",
'identified_entities': "Entidades Identificadas",
'key_concepts': "Conceptos Clave",
'success_message': "Análisis semántico guardado correctamente.",
'error_message': "Hubo un problema al guardar el análisis semántico. Por favor, inténtelo de nuevo.",
'warning_message': "Por favor, ingrese un texto o cargue un archivo para analizar.",
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.",
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero."
},
'en': {
'title': "AIdeaText - Semantic Analysis",
'text_input_label': "Enter a text to analyze (max. 5,000 words):",
'text_input_placeholder': "The goal of this application is to improve your writing skills...",
'file_uploader': "Or upload a text file",
'analyze_button': "Analyze text",
'conceptual_relations': "Conceptual Relations",
'identified_entities': "Identified Entities",
'key_concepts': "Key Concepts",
'success_message': "Semantic analysis saved successfully.",
'error_message': "There was a problem saving the semantic analysis. Please try again.",
'warning_message': "Please enter a text or upload a file to analyze.",
'initial_message': "Enter a text and press 'Analyze text' to start.",
'no_results': "No results available. Please perform an analysis first."
},
'fr': {
'title': "AIdeaText - Analyse sémantique",
'text_input_label': "Entrez un texte à analyser (max. 5 000 mots) :",
'text_input_placeholder': "L'objectif de cette application est d'améliorer vos compétences en rédaction...",
'file_uploader': "Ou téléchargez un fichier texte",
'analyze_button': "Analyser le texte",
'conceptual_relations': "Relations Conceptuelles",
'identified_entities': "Entités Identifiées",
'key_concepts': "Concepts Clés",
'success_message': "Analyse sémantique enregistrée avec succès.",
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse sémantique. Veuillez réessayer.",
'warning_message': "Veuillez entrer un texte ou télécharger un fichier à analyser.",
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse."
}
}
t = translations[lang_code]
st.header(t['title'])
# Opción para introducir texto
text_input = st.text_area(
t['text_input_label'],
height=150,
placeholder=t['text_input_placeholder'],
)
# Opción para cargar archivo
uploaded_file = st.file_uploader(t['file_uploader'], type=['txt'])
if st.button(t['analyze_button']):
if text_input or uploaded_file is not None:
if uploaded_file:
text_content = uploaded_file.getvalue().decode('utf-8')
else:
text_content = text_input
# Realizar el análisis
analysis_result = perform_semantic_analysis(text_content, nlp_models[lang_code], lang_code)
# Guardar el resultado en el estado de la sesión
st.session_state.semantic_result = analysis_result
# Mostrar resultados
display_semantic_results(st.session_state.semantic_result, lang_code, t)
# Guardar el resultado del análisis
if store_semantic_result(st.session_state.username, text_content, analysis_result):
st.success(t['success_message'])
else:
st.error(t['error_message'])
else:
st.warning(t['warning_message'])
elif 'semantic_result' in st.session_state:
# Si hay un resultado guardado, mostrarlo
display_semantic_results(st.session_state.semantic_result, lang_code, t)
else:
st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones
def display_semantic_results(result, lang_code, t):
if result is None:
st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones
return
# Mostrar conceptos clave
with st.expander(t['key_concepts'], expanded=True):
concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']])
st.write(concept_text)
# Mostrar el gráfico de relaciones conceptuales
with st.expander(t['conceptual_relations'], expanded=True):
st.pyplot(result['relations_graph'])
##################################################################################################
def display_discourse_analysis_interface(nlp_models, lang_code):
translations = {
'es': {
'title': "AIdeaText - Análisis del discurso",
'file_uploader1': "Cargar archivo de texto 1 (Patrón)",
'file_uploader2': "Cargar archivo de texto 2 (Comparación)",
'analyze_button': "Analizar textos",
'comparison': "Comparación de Relaciones Semánticas",
'success_message': "Análisis del discurso guardado correctamente.",
'error_message': "Hubo un problema al guardar el análisis del discurso. Por favor, inténtelo de nuevo.",
'warning_message': "Por favor, cargue ambos archivos para analizar.",
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.",
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.",
'key_concepts': "Conceptos Clave",
'graph_not_available': "El gráfico no está disponible.",
'concepts_not_available': "Los conceptos clave no están disponibles.",
'comparison_not_available': "La comparación no está disponible."
},
'en': {
'title': "AIdeaText - Discourse Analysis",
'file_uploader1': "Upload text file 1 (Pattern)",
'file_uploader2': "Upload text file 2 (Comparison)",
'analyze_button': "Analyze texts",
'comparison': "Comparison of Semantic Relations",
'success_message': "Discourse analysis saved successfully.",
'error_message': "There was a problem saving the discourse analysis. Please try again.",
'warning_message': "Please upload both files to analyze.",
'initial_message': "Enter a text and press 'Analyze text' to start.",
'no_results': "No results available. Please perform an analysis first.",
'key_concepts': "Key Concepts",
'graph_not_available': "The graph is not available.",
'concepts_not_available': "Key concepts are not available.",
'comparison_not_available': "The comparison is not available."
},
'fr': {
'title': "AIdeaText - Analyse du discours",
'file_uploader1': "Télécharger le fichier texte 1 (Modèle)",
'file_uploader2': "Télécharger le fichier texte 2 (Comparaison)",
'analyze_button': "Analyser les textes",
'comparison': "Comparaison des Relations Sémantiques",
'success_message': "Analyse du discours enregistrée avec succès.",
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse du discours. Veuillez réessayer.",
'warning_message': "Veuillez télécharger les deux fichiers à analyser.",
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.",
'key_concepts': "Concepts Clés",
'graph_not_available': "Le graphique n'est pas disponible.",
'concepts_not_available': "Les concepts clés ne sont pas disponibles.",
'comparison_not_available': "La comparaison n'est pas disponible."
}
}
t = translations[lang_code]
st.header(t['title'])
col1, col2 = st.columns(2)
with col1:
uploaded_file1 = st.file_uploader(t['file_uploader1'], type=['txt'])
with col2:
uploaded_file2 = st.file_uploader(t['file_uploader2'], type=['txt'])
if st.button(t['analyze_button']):
if uploaded_file1 is not None and uploaded_file2 is not None:
text_content1 = uploaded_file1.getvalue().decode('utf-8')
text_content2 = uploaded_file2.getvalue().decode('utf-8')
# Realizar el análisis
analysis_result = perform_discourse_analysis(text_content1, text_content2, nlp_models[lang_code], lang_code)
# Guardar el resultado en el estado de la sesión
st.session_state.discourse_result = analysis_result
# Mostrar los resultados del análisis
display_discourse_results(st.session_state.discourse_result, lang_code, t)
# Guardar el resultado del análisis
if store_discourse_analysis_result(st.session_state.username, text_content1, text_content2, analysis_result):
st.success(t['success_message'])
else:
st.error(t['error_message'])
else:
st.warning(t['warning_message'])
elif 'discourse_result' in st.session_state and st.session_state.discourse_result is not None:
# Si hay un resultado guardado, mostrarlo
display_discourse_results(st.session_state.discourse_result, lang_code, t)
else:
st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones
#################################################
def display_discourse_results(result, lang_code, t):
if result is None:
st.warning(t.get('no_results', "No hay resultados disponibles."))
return
col1, col2 = st.columns(2)
with col1:
with st.expander(t.get('file_uploader1', "Documento 1"), expanded=True):
st.subheader(t.get('key_concepts', "Conceptos Clave"))
if 'key_concepts1' in result:
df1 = pd.DataFrame(result['key_concepts1'], columns=['Concepto', 'Frecuencia'])
df1['Frecuencia'] = df1['Frecuencia'].round(2)
st.table(df1)
else:
st.warning(t.get('concepts_not_available', "Los conceptos clave no están disponibles."))
if 'graph1' in result:
st.pyplot(result['graph1'])
else:
st.warning(t.get('graph_not_available', "El gráfico no está disponible."))
with col2:
with st.expander(t.get('file_uploader2', "Documento 2"), expanded=True):
st.subheader(t.get('key_concepts', "Conceptos Clave"))
if 'key_concepts2' in result:
df2 = pd.DataFrame(result['key_concepts2'], columns=['Concepto', 'Frecuencia'])
df2['Frecuencia'] = df2['Frecuencia'].round(2)
st.table(df2)
else:
st.warning(t.get('concepts_not_available', "Los conceptos clave no están disponibles."))
if 'graph2' in result:
st.pyplot(result['graph2'])
else:
st.warning(t.get('graph_not_available', "El gráfico no está disponible."))
# Relación de conceptos entre ambos documentos (Diagrama de Sankey)
st.subheader(t.get('comparison', "Relación de conceptos entre ambos documentos"))
if 'key_concepts1' in result and 'key_concepts2' in result:
df1 = pd.DataFrame(result['key_concepts1'], columns=['Concepto', 'Frecuencia'])
df2 = pd.DataFrame(result['key_concepts2'], columns=['Concepto', 'Frecuencia'])
# Crear una lista de todos los conceptos únicos
all_concepts = list(set(df1['Concepto'].tolist() + df2['Concepto'].tolist()))
# Crear un diccionario de colores para cada concepto
color_scale = [f'rgb({random.randint(50,255)},{random.randint(50,255)},{random.randint(50,255)})' for _ in range(len(all_concepts))]
color_map = dict(zip(all_concepts, color_scale))
# Crear el diagrama de Sankey
source = [0] * len(df1) + list(range(2, 2 + len(df1)))
target = list(range(2, 2 + len(df1))) + [1] * len(df2)
value = list(df1['Frecuencia']) + list(df2['Frecuencia'])
node_colors = ['blue', 'red'] + [color_map[concept] for concept in df1['Concepto']] + [color_map[concept] for concept in df2['Concepto']]
link_colors = [color_map[concept] for concept in df1['Concepto']] + [color_map[concept] for concept in df2['Concepto']]
fig = go.Figure(data=[go.Sankey(
node = dict(
pad = 15,
thickness = 20,
line = dict(color = "black", width = 0.5),
label = [t.get('file_uploader1', "Documento 1"), t.get('file_uploader2', "Documento 2")] + list(df1['Concepto']) + list(df2['Concepto']),
color = node_colors
),
link = dict(
source = source,
target = target,
value = value,
color = link_colors
))])
fig.update_layout(title_text="Relación de conceptos entre documentos", font_size=10)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning(t.get('comparison_not_available', "La comparación no está disponible."))
# Aquí puedes agregar el código para mostrar los gráficos si es necesario
##################################################################################################
#def display_saved_discourse_analysis(analysis_data):
# img_bytes = base64.b64decode(analysis_data['combined_graph'])
# img = plt.imread(io.BytesIO(img_bytes), format='png')
# st.image(img, use_column_width=True)
# st.write("Texto del documento patrón:")
# st.write(analysis_data['text1'])
# st.write("Texto del documento comparado:")
# st.write(analysis_data['text2'])
##################################################################################################
def display_chatbot_interface(lang_code, nlp_models):
translations = {
'es': {
'input_placeholder': "Escribe tu respuesta aquí...",
'initial_message': "¡Hola! Soy tu asistente de análisis. Para comenzar, escribe '/texto_descriptivo', '/texto_narrativo', etc.",
'send_button': "Enviar",
'current_diagram': "Diagrama de Arco Actual",
'previous_diagram': "Diagrama de Arco Anterior",
'current_question': "Pregunta actual",
'text_construction': "Construcción de texto en progreso",
'text_completed': "Has completado todas las preguntas. Texto final:",
'improve_suggestion': "Ahora tienes que unir las oraciones con las conjunciones y conectores adecuados.",
'generate_arc': "Generando diagrama de arco para tu texto...",
'continue_iteration': "Puedes continuar mejorando tu texto. Escribe tu versión mejorada o usa '/analisis_morfosintactico [tu_texto]' para un nuevo análisis."
},
'en': {
'input_placeholder': "Type your answer here...",
'initial_message': "Hello! I'm your analysis assistant. To start, type '/texto_descriptivo', '/texto_narrativo', etc.",
'send_button': "Send",
'current_diagram': "Current Arc Diagram",
'previous_diagram': "Previous Arc Diagram",
'current_question': "Current question",
'text_construction': "Text construction in progress",
'text_completed': "You have completed all the questions. Final text:",
'improve_suggestion': "Now you need to connect the sentences with appropriate conjunctions and connectors.",
'generate_arc': "Generating arc diagram for your text...",
'continue_iteration': "You can continue improving your text. Write your improved version or use '/analisis_morfosintactico [your_text]' for a new analysis."
},
'fr': {
'input_placeholder': "Écrivez votre réponse ici...",
'initial_message': "Bonjour! Je suis votre assistant d'analyse. Pour commencer, tapez '/texto_descriptivo', '/texto_narrativo', etc.",
'send_button': "Envoyer",
'current_diagram': "Diagramme d'Arc Actuel",
'previous_diagram': "Diagramme d'Arc Précédent",
'current_question': "Question actuelle",
'text_construction': "Construction de texte en cours",
'text_completed': "Vous avez répondu à toutes les questions. Texte final :",
'improve_suggestion': "Maintenant, vous devez relier les phrases avec des conjonctions et des connecteurs appropriés.",
'generate_arc': "Génération du diagramme d'arc pour votre texte...",
'continue_iteration': "Vous pouvez continuer à améliorer votre texte. Écrivez votre version améliorée ou utilisez '/analisis_morfosintactico [votre_texte]' pour une nouvelle analyse."
}
}
t = translations[lang_code]
st.write("Debug: Function started")
# Inicialización del estado de la sesión
if 'messages' not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": t['initial_message']}]
if 'current_text_type' not in st.session_state:
st.session_state.current_text_type = None
if 'current_question_index' not in st.session_state:
st.session_state.current_question_index = 0
if 'user_responses' not in st.session_state:
st.session_state.user_responses = []
if 'current_arc_diagram' not in st.session_state:
st.session_state.current_arc_diagram = None
if 'previous_arc_diagram' not in st.session_state:
st.session_state.previous_arc_diagram = None
st.write(f"Debug: Current text type: {st.session_state.current_text_type}")
st.write(f"Debug: Current question index: {st.session_state.current_question_index}")
chat_container = st.empty()
current_diagram_container = st.empty()
previous_diagram_container = st.empty()
# Mostrar la pregunta actual si estamos en modo de construcción de texto
if st.session_state.current_text_type:
st.subheader(t['text_construction'])
current_question = TEXT_TYPES[st.session_state.current_text_type][st.session_state.current_question_index]
st.write(f"{t['current_question']}: {current_question}")
user_input = st.text_input(t['input_placeholder'], key="user_input")
if st.button(t['send_button']):
st.write("Debug: Send button pressed")
if user_input:
st.session_state.messages.append({"role": "user", "content": user_input})
if user_input.startswith('/texto_'):
text_type = user_input.split('_')[1]
if text_type in TEXT_TYPES:
st.session_state.current_text_type = text_type
st.session_state.current_question_index = 0
st.session_state.user_responses = []
response = f"Comenzando construcción de texto {text_type}. {TEXT_TYPES[text_type][0]}"
else:
response = "Tipo de texto no reconocido. Por favor, intenta de nuevo."
elif st.session_state.current_text_type:
st.session_state.user_responses.append(user_input)
st.session_state.current_question_index += 1
if st.session_state.current_question_index < len(TEXT_TYPES[st.session_state.current_text_type]):
next_question = TEXT_TYPES[st.session_state.current_text_type][st.session_state.current_question_index]
response = f"Gracias. Siguiente pregunta: {next_question}"
else:
final_text = " ".join(st.session_state.user_responses)
response = f"{t['text_completed']} {final_text}\n\n{t['improve_suggestion']}\n\n{t['generate_arc']}"
# Generar diagrama de arco
st.write(f"Debug: Generating arc diagram for final text: {final_text}")
st.session_state.previous_arc_diagram = st.session_state.current_arc_diagram
result = perform_advanced_morphosyntactic_analysis(final_text, nlp_models[lang_code])
st.write(f"Debug: Morphosyntactic analysis result: {result}")
if 'arc_diagram' in result:
st.session_state.current_arc_diagram = result['arc_diagram']
st.write(f"Debug: Arc diagram generated with {len(st.session_state.current_arc_diagram)} sentences")
else:
st.write("Debug: 'arc_diagram' not found in the result of morphosyntactic analysis")
response += f"\n\n{t['continue_iteration']}"
st.session_state.current_text_type = None
st.session_state.current_question_index = 0
elif user_input.startswith('/analisis_morfosintactico'):
text = user_input.split(' ', 1)[1].strip('[]')
st.write(f"Debug: Performing morphosyntactic analysis on: {text}")
result = perform_advanced_morphosyntactic_analysis(text, nlp_models[lang_code])
st.write(f"Debug: Morphosyntactic analysis result: {result}")
st.session_state.previous_arc_diagram = st.session_state.current_arc_diagram
if 'arc_diagram' in result:
st.session_state.current_arc_diagram = result['arc_diagram']
st.write(f"Debug: Arc diagram generated with {len(st.session_state.current_arc_diagram)} sentences")
response = "Análisis morfosintáctico completado. Por favor, revisa los resultados en la sección de diagramas de arco."
else:
st.write("Debug: 'arc_diagram' not found in the result of morphosyntactic analysis")
response = "Hubo un problema al generar el diagrama de arco. Por favor, intenta de nuevo."
else:
response = process_chat_input(user_input, lang_code, nlp_models)
st.session_state.messages.append({"role": "assistant", "content": response})
#st.experimental_rerun()
# Mostrar diagramas de arco
st.write(f"Debug: Current arc diagram: {st.session_state.current_arc_diagram is not None}")
st.write(f"Debug: Previous arc diagram: {st.session_state.previous_arc_diagram is not None}")
if st.session_state.current_arc_diagram:
with current_diagram_container:
st.subheader(t['current_diagram'])
for i, arc_diagram in enumerate(st.session_state.current_arc_diagram):
st.write(f"Oración {i+1}")
st.write(arc_diagram, unsafe_allow_html=True)
st.write("Debug: Current arc diagram displayed")
else:
st.write("Debug: No current arc diagram to display")
if st.session_state.previous_arc_diagram:
with previous_diagram_container:
st.subheader(t['previous_diagram'])
for i, arc_diagram in enumerate(st.session_state.previous_arc_diagram):
st.write(f"Oración {i+1}")
st.write(arc_diagram, unsafe_allow_html=True)
st.write("Debug: Previous arc diagram displayed")
else:
st.write("Debug: No previous arc diagram to display")
st.write("Debug: Function completed")
######################################################
if __name__ == "__main__":
main()