|
|
|
import streamlit as st
|
|
from streamlit_float import *
|
|
from streamlit_antd_components import *
|
|
from streamlit.components.v1 import html
|
|
import base64
|
|
from .morphosyntax_process import process_morphosyntactic_input
|
|
from ..chatbot.chatbot import initialize_chatbot
|
|
from ..utils.widget_utils import generate_unique_key
|
|
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result
|
|
from ..database.chat_db import store_chat_history
|
|
from ..database.morphosintaxis_export import export_user_interactions
|
|
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
def display_morphosyntax_interface(lang_code, nlp_models, t):
|
|
st.title("Análisis Morfosintáctico")
|
|
|
|
|
|
chat_container = st.container()
|
|
|
|
|
|
user_input = st.chat_input(t['morpho_input_label'])
|
|
|
|
|
|
if user_input:
|
|
|
|
st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input})
|
|
store_chat_history(st.session_state.username, [{"role": "user", "content": user_input}], "morphosyntax")
|
|
|
|
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t)
|
|
|
|
|
|
assistant_message = {
|
|
"role": "assistant",
|
|
"content": response,
|
|
"visualizations": visualizations if visualizations else []
|
|
}
|
|
st.session_state.morphosyntax_chat_history.append(assistant_message)
|
|
store_chat_history(st.session_state.username, [assistant_message], "morphosyntax")
|
|
|
|
|
|
if user_input.startswith('/analisis_morfosintactico') and result:
|
|
store_student_morphosyntax_result(
|
|
st.session_state.username,
|
|
user_input.split('[', 1)[1].rsplit(']', 1)[0],
|
|
visualizations
|
|
)
|
|
|
|
|
|
with chat_container:
|
|
if 'morphosyntax_chat_history' not in st.session_state:
|
|
st.session_state.morphosyntax_chat_history = []
|
|
for message in st.session_state.morphosyntax_chat_history:
|
|
with st.chat_message(message["role"]):
|
|
st.write(message["content"])
|
|
if "visualizations" in message and message["visualizations"]:
|
|
for i, viz in enumerate(message["visualizations"]):
|
|
st.markdown(f"**Oración {i+1} del párrafo analizado**")
|
|
st.components.v1.html(
|
|
f"""
|
|
<div style="width: 100%; overflow-x: auto; white-space: nowrap;">
|
|
<div style="min-width: 1200px;">
|
|
{viz}
|
|
</div>
|
|
</div>
|
|
""",
|
|
height=370,
|
|
scrolling=True
|
|
)
|
|
if i < len(message["visualizations"]) - 1:
|
|
st.markdown("---")
|
|
|
|
|
|
if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')):
|
|
st.session_state.morphosyntax_chat_history = []
|
|
st.rerun()
|
|
|
|
|
|
if st.button("Exportar Interacciones"):
|
|
pdf_buffer = export_user_interactions(st.session_state.username, 'morphosyntax')
|
|
st.download_button(
|
|
label="Descargar PDF",
|
|
data=pdf_buffer,
|
|
file_name="interacciones_morfosintaxis.pdf",
|
|
mime="application/pdf"
|
|
)
|
|
|
|
'''
|
|
if user_input:
|
|
# Añadir el mensaje del usuario al historial
|
|
st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input})
|
|
|
|
# Procesar el input del usuario nuevo al 26-9-2024
|
|
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t)
|
|
|
|
# Mostrar indicador de carga
|
|
with st.spinner(t.get('processing', 'Processing...')):
|
|
try:
|
|
# Procesar el input del usuario
|
|
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t)
|
|
|
|
# Añadir la respuesta al historial
|
|
message = {
|
|
"role": "assistant",
|
|
"content": response
|
|
}
|
|
if visualizations:
|
|
message["visualizations"] = visualizations
|
|
st.session_state.morphosyntax_chat_history.append(message)
|
|
|
|
# Mostrar la respuesta más reciente
|
|
with st.chat_message("assistant"):
|
|
st.write(response)
|
|
if visualizations:
|
|
for i, viz in enumerate(visualizations):
|
|
st.markdown(f"**Oración {i+1} del párrafo analizado**")
|
|
st.components.v1.html(
|
|
f"""
|
|
<div style="width: 100%; overflow-x: auto; white-space: nowrap;">
|
|
<div style="min-width: 1200px;">
|
|
{viz}
|
|
</div>
|
|
</div>
|
|
""",
|
|
height=350,
|
|
scrolling=True
|
|
)
|
|
if i < len(visualizations) - 1:
|
|
st.markdown("---") # Separador entre diagramas
|
|
|
|
# Si es un análisis, guardarlo en la base de datos
|
|
if user_input.startswith('/analisis_morfosintactico') and result:
|
|
store_morphosyntax_result(
|
|
st.session_state.username,
|
|
user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado
|
|
result.get('repeated_words', {}),
|
|
visualizations,
|
|
result.get('pos_analysis', []),
|
|
result.get('morphological_analysis', []),
|
|
result.get('sentence_structure', [])
|
|
)
|
|
|
|
|
|
except Exception as e:
|
|
st.error(f"{t['error_processing']}: {str(e)}")
|
|
|
|
|
|
|
|
# Forzar la actualización de la interfaz
|
|
st.rerun()
|
|
|
|
# Botón para limpiar el historial del chat
|
|
if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')):
|
|
st.session_state.morphosyntax_chat_history = []
|
|
st.rerun()
|
|
'''
|
|
|
|
|
|
'''
|
|
############ MODULO PARA DEPURACIÓN Y PRUEBAS #####################################################
|
|
def display_morphosyntax_interface(lang_code, nlp_models, t):
|
|
st.subheader(t['morpho_title'])
|
|
|
|
text_input = st.text_area(
|
|
t['warning_message'],
|
|
height=150,
|
|
key=generate_unique_key("morphosyntax", "text_area")
|
|
)
|
|
|
|
if st.button(
|
|
t['results_title'],
|
|
key=generate_unique_key("morphosyntax", "analyze_button")
|
|
):
|
|
if text_input:
|
|
# Aquí iría tu lógica de análisis morfosintáctico
|
|
# Por ahora, solo mostraremos un mensaje de placeholder
|
|
st.info(t['analysis_placeholder'])
|
|
else:
|
|
st.warning(t['no_text_warning'])
|
|
###
|
|
#################################################
|
|
'''
|
|
|