|
|
|
import streamlit as st |
|
|
|
from ..text_analysis.morpho_analysis import ( |
|
get_repeated_words_colors, |
|
highlight_repeated_words, |
|
generate_arc_diagram, |
|
get_detailed_pos_analysis, |
|
get_morphological_analysis, |
|
get_sentence_structure_analysis, |
|
perform_advanced_morphosyntactic_analysis |
|
) |
|
|
|
|
|
__all__ = [ |
|
'process_morphosyntactic_input', |
|
'highlight_repeated_words', |
|
'generate_arc_diagram', |
|
'get_repeated_words_colors', |
|
'get_detailed_pos_analysis', |
|
'get_morphological_analysis', |
|
'get_sentence_structure_analysis', |
|
'perform_advanced_morphosyntactic_analysis', |
|
'POS_COLORS', |
|
'POS_TRANSLATIONS' |
|
] |
|
|
|
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result |
|
|
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def process_morphosyntactic_input(text, lang_code, nlp_models, t): |
|
""" |
|
Procesa el texto ingresado para realizar el análisis morfosintáctico. |
|
|
|
Args: |
|
text: Texto a analizar |
|
lang_code: Código del idioma |
|
nlp_models: Diccionario de modelos spaCy |
|
t: Diccionario de traducciones |
|
|
|
Returns: |
|
tuple: (análisis, visualizaciones, texto_resaltado, mensaje) |
|
""" |
|
try: |
|
|
|
doc = nlp_models[lang_code](text) |
|
|
|
|
|
analysis = perform_advanced_morphosyntactic_analysis(text, nlp_models[lang_code]) |
|
|
|
|
|
arc_diagrams = generate_arc_diagram(doc) |
|
|
|
|
|
word_colors = get_repeated_words_colors(doc) |
|
highlighted_text = highlight_repeated_words(doc, word_colors) |
|
|
|
|
|
store_student_morphosyntax_result( |
|
st.session_state.username, |
|
text, |
|
{ |
|
'arc_diagrams': arc_diagrams, |
|
'pos_analysis': analysis['pos_analysis'], |
|
'morphological_analysis': analysis['morphological_analysis'], |
|
'sentence_structure': analysis['sentence_structure'] |
|
} |
|
) |
|
|
|
return { |
|
'analysis': analysis, |
|
'visualizations': arc_diagrams, |
|
'highlighted_text': highlighted_text, |
|
'success': True, |
|
'message': t.get('MORPHOSYNTACTIC', {}).get('success_message', 'Analysis completed successfully') |
|
} |
|
|
|
except Exception as e: |
|
logger.error(f"Error en el análisis morfosintáctico: {str(e)}") |
|
return { |
|
'analysis': None, |
|
'visualizations': None, |
|
'highlighted_text': None, |
|
'success': False, |
|
'message': t.get('MORPHOSYNTACTIC', {}).get('error_message', f'Error in analysis: {str(e)}') |
|
} |
|
|
|
|
|
def format_analysis_results(analysis_result, t): |
|
""" |
|
Formatea los resultados del análisis para su visualización. |
|
|
|
Args: |
|
analysis_result: Resultado del análisis morfosintáctico |
|
t: Diccionario de traducciones |
|
|
|
Returns: |
|
dict: Resultados formateados para visualización |
|
""" |
|
morpho_t = t.get('MORPHOSYNTACTIC', {}) |
|
|
|
if not analysis_result['success']: |
|
return { |
|
'formatted_text': analysis_result['message'], |
|
'visualizations': None |
|
} |
|
|
|
formatted_sections = [] |
|
|
|
|
|
if 'pos_analysis' in analysis_result['analysis']: |
|
pos_section = [f"### {morpho_t.get('pos_analysis', 'Part of Speech Analysis')}"] |
|
for pos_item in analysis_result['analysis']['pos_analysis']: |
|
pos_section.append( |
|
f"- {morpho_t.get(pos_item['pos'], pos_item['pos'])}: " |
|
f"{pos_item['count']} ({pos_item['percentage']}%)\n " |
|
f"Ejemplos: {', '.join(pos_item['examples'])}" |
|
) |
|
formatted_sections.append('\n'.join(pos_section)) |
|
|
|
|
|
|
|
return { |
|
'formatted_text': '\n\n'.join(formatted_sections), |
|
'visualizations': analysis_result['visualizations'], |
|
'highlighted_text': analysis_result['highlighted_text'] |
|
} |
|
|
|
__all__ = ['process_morphosyntactic_input', 'format_analysis_results'] |