|
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
import torch
|
|
from torch.optim import Adam
|
|
from torch.utils.data import DataLoader, Dataset
|
|
import json
|
|
import tqdm
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
|
|
model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
|
|
|
|
class MultilingualChatData(Dataset):
|
|
def __init__(self, file_path, tokenizer, max_length=512):
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
self.data = json.load(f)
|
|
self.tokenizer = tokenizer
|
|
self.max_length = max_length
|
|
|
|
def __len__(self):
|
|
return len(self.data)
|
|
|
|
def __getitem__(self, idx):
|
|
item = self.data[idx]
|
|
input_text = f"<startofstring> {item['input']} <bot>: {item['output']} <endofstring>"
|
|
encoding = self.tokenizer(input_text, truncation=True, padding='max_length', max_length=self.max_length, return_tensors="pt")
|
|
return encoding['input_ids'].squeeze(), encoding['attention_mask'].squeeze()
|
|
|
|
class MultilingualChatbot:
|
|
def __init__(self):
|
|
self.models = {
|
|
'en': GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-medium"),
|
|
'es': GPT2LMHeadModel.from_pretrained("DeepESP/gpt2-spanish"),
|
|
'fr': GPT2LMHeadModel.from_pretrained("asi/gpt-fr-cased-small")
|
|
}
|
|
self.tokenizers = {
|
|
'en': GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-medium"),
|
|
'es': GPT2Tokenizer.from_pretrained("DeepESP/gpt2-spanish"),
|
|
'fr': GPT2Tokenizer.from_pretrained("asi/gpt-fr-cased-small")
|
|
}
|
|
for tokenizer in self.tokenizers.values():
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
tokenizer.add_special_tokens({
|
|
"bos_token": "<startofstring>",
|
|
"eos_token": "<endofstring>"
|
|
})
|
|
tokenizer.add_tokens(["<bot>:"])
|
|
|
|
for model in self.models.values():
|
|
model.resize_token_embeddings(len(self.tokenizers['en']))
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
for model in self.models.values():
|
|
model.to(self.device)
|
|
|
|
def train(self, lang, data_file, epochs=5, batch_size=32, learning_rate=1e-4):
|
|
model = self.models[lang]
|
|
tokenizer = self.tokenizers[lang]
|
|
|
|
chat_data = MultilingualChatData(data_file, tokenizer)
|
|
data_loader = DataLoader(chat_data, batch_size=batch_size, shuffle=True)
|
|
|
|
optimizer = Adam(model.parameters(), lr=learning_rate)
|
|
|
|
model.train()
|
|
for epoch in range(epochs):
|
|
total_loss = 0
|
|
for batch in tqdm.tqdm(data_loader, desc=f"Epoch {epoch+1}/{epochs}"):
|
|
input_ids, attention_mask = [b.to(self.device) for b in batch]
|
|
|
|
optimizer.zero_grad()
|
|
outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids)
|
|
loss = outputs.loss
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
total_loss += loss.item()
|
|
|
|
print(f"Epoch {epoch+1}/{epochs}, Loss: {total_loss/len(data_loader):.4f}")
|
|
|
|
torch.save(model.state_dict(), f"model_state_{lang}.pt")
|
|
|
|
def generate_response(self, prompt, src_lang):
|
|
model = self.models.get(src_lang, self.models['en'])
|
|
tokenizer = self.tokenizers.get(src_lang, self.tokenizers['en'])
|
|
|
|
input_text = f"<startofstring> {prompt} <bot>: "
|
|
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(self.device)
|
|
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=self.device)
|
|
|
|
output = model.generate(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=1000,
|
|
pad_token_id=tokenizer.eos_token_id,
|
|
no_repeat_ngram_size=3,
|
|
do_sample=True,
|
|
top_k=50,
|
|
top_p=0.95,
|
|
temperature=0.7,
|
|
num_return_sequences=1,
|
|
length_penalty=1.0,
|
|
repetition_penalty=1.2
|
|
)
|
|
|
|
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
return decoded_output.split("<bot>:")[-1].strip()
|
|
|
|
def initialize_chatbot():
|
|
return MultilingualChatbot()
|
|
|
|
def get_chatbot_response(chatbot, prompt, src_lang):
|
|
return chatbot.generate_response(prompt, src_lang)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
chatbot = initialize_chatbot()
|
|
|
|
|
|
chatbot.train('es', './spanish_chat_data.json', epochs=3)
|
|
|
|
|
|
print(get_chatbot_response(chatbot, "Hola, ¿cómo estás?", 'es'))
|
|
print(get_chatbot_response(chatbot, "Hello, how are you?", 'en'))
|
|
print(get_chatbot_response(chatbot, "Bonjour, comment allez-vous?", 'fr')) |