v3 / modules /discourse /discourse_live_interface.py
AIdeaText's picture
Update modules/discourse/discourse_live_interface.py
aa06d49 verified
raw
history blame
6.01 kB
# modules/discourse/discourse/discourse_live_interface.py
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
import pandas as pd
import logging
import io
import matplotlib.pyplot as plt
# Configuración del logger
logger = logging.getLogger(__name__)
# Importaciones locales
from .discourse_process import perform_discourse_analysis
from .discourse_interface import display_discourse_results # Añadida esta importación
from ..utils.widget_utils import generate_unique_key
from ..database.discourse_mongo_db import store_student_discourse_result
from ..database.chat_mongo_db import store_chat_history, get_chat_history
#####################################################################################################
def fig_to_bytes(fig):
"""Convierte una figura de matplotlib a bytes."""
try:
buf = io.BytesIO()
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
buf.seek(0)
return buf.getvalue()
except Exception as e:
logger.error(f"Error en fig_to_bytes: {str(e)}")
return None
#################################################################################################
def display_discourse_live_interface(lang_code, nlp_models, discourse_t):
"""
Interfaz para el análisis del discurso en vivo con layout mejorado
"""
try:
if 'discourse_live_state' not in st.session_state:
st.session_state.discourse_live_state = {
'analysis_count': 0,
'current_text1': '',
'current_text2': '',
'last_result': None,
'text_changed': False
}
# Título
st.subheader(discourse_t.get('enter_text', 'Ingrese sus textos'))
# Área de entrada de textos en dos columnas
text_col1, text_col2 = st.columns(2)
# Texto 1
with text_col1:
st.markdown("**Texto 1 (Patrón)**")
text_input1 = st.text_area(
"Texto 1",
height=200,
key="discourse_live_text1",
value=st.session_state.discourse_live_state.get('current_text1', ''),
label_visibility="collapsed"
)
st.session_state.discourse_live_state['current_text1'] = text_input1
# Texto 2
with text_col2:
st.markdown("**Texto 2 (Comparación)**")
text_input2 = st.text_area(
"Texto 2",
height=200,
key="discourse_live_text2",
value=st.session_state.discourse_live_state.get('current_text2', ''),
label_visibility="collapsed"
)
st.session_state.discourse_live_state['current_text2'] = text_input2
# Botón de análisis centrado
col1, col2, col3 = st.columns([1,2,1])
with col1:
analyze_button = st.button(
discourse_t.get('analyze_button', 'Analizar'),
key="discourse_live_analyze",
type="primary",
icon="🔍",
disabled=not (text_input1 and text_input2),
use_container_width=True
)
# Proceso y visualización de resultados
if analyze_button and text_input1 and text_input2:
try:
with st.spinner(discourse_t.get('processing', 'Procesando...')):
result = perform_discourse_analysis(
text_input1,
text_input2,
nlp_models[lang_code],
lang_code
)
if result['success']:
# Procesar ambos gráficos
for graph_key in ['graph1', 'graph2']:
if graph_key in result and result[graph_key] is not None:
bytes_key = f'{graph_key}_bytes'
graph_bytes = fig_to_bytes(result[graph_key])
if graph_bytes:
result[bytes_key] = graph_bytes
plt.close(result[graph_key])
st.session_state.discourse_live_state['last_result'] = result
st.session_state.discourse_live_state['analysis_count'] += 1
store_student_discourse_result(
st.session_state.username,
text_input1,
text_input2,
result
)
# Mostrar resultados
st.markdown("---")
st.subheader(discourse_t.get('results_title', 'Resultados del Análisis'))
display_discourse_results(result, lang_code, discourse_t)
else:
st.error(result.get('message', 'Error en el análisis'))
except Exception as e:
logger.error(f"Error en análisis: {str(e)}")
st.error(discourse_t.get('error_processing', f'Error al procesar el texto: {str(e)}'))
# Mostrar resultados previos si existen
elif 'last_result' in st.session_state.discourse_live_state and \
st.session_state.discourse_live_state['last_result'] is not None:
st.markdown("---")
st.subheader(discourse_t.get('previous_results', 'Resultados del Análisis Anterior'))
display_discourse_results(
st.session_state.discourse_live_state['last_result'],
lang_code,
discourse_t
)
except Exception as e:
logger.error(f"Error general en interfaz del discurso en vivo: {str(e)}")
st.error(discourse_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))