|
import streamlit as st |
|
import logging |
|
from .semantic_process import process_semantic_analysis |
|
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input |
|
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files |
|
from ..utils.widget_utils import generate_unique_key |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
def get_translation(t, key, default): |
|
return t.get(key, default) |
|
|
|
def display_semantic_interface(lang_code, nlp_models, t): |
|
|
|
if 'semantic_chatbot' not in st.session_state: |
|
st.session_state.semantic_chatbot = initialize_chatbot('semantic') |
|
|
|
if 'semantic_chat_history' not in st.session_state: |
|
st.session_state.semantic_chat_history = [] |
|
|
|
st.markdown(""" |
|
<style> |
|
.stTabs [data-baseweb="tab-list"] { |
|
gap: 24px; |
|
} |
|
.stTabs [data-baseweb="tab"] { |
|
height: 50px; |
|
white-space: pre-wrap; |
|
background-color: #F0F2F6; |
|
border-radius: 4px 4px 0px 0px; |
|
gap: 1px; |
|
padding-top: 10px; |
|
padding-bottom: 10px; |
|
} |
|
.stTabs [aria-selected="true"] { |
|
background-color: #FFFFFF; |
|
} |
|
.file-list { |
|
border: 1px solid #ddd; |
|
border-radius: 5px; |
|
padding: 10px; |
|
margin-top: 20px; |
|
} |
|
.file-item { |
|
display: flex; |
|
justify-content: space-between; |
|
align-items: center; |
|
padding: 5px 0; |
|
border-bottom: 1px solid #eee; |
|
} |
|
.file-item:last-child { |
|
border-bottom: none; |
|
} |
|
.chat-message-container { |
|
margin-bottom: 10px; |
|
max-height: 400px; |
|
overflow-y: auto; |
|
} |
|
.stButton { |
|
margin-top: 0 !important; |
|
} |
|
.graph-container { |
|
border: 1px solid #ddd; |
|
border-radius: 5px; |
|
padding: 10px; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.morpho-initial-message { |
|
background-color: #f0f2f6; |
|
border-left: 5px solid #4CAF50; |
|
padding: 10px; |
|
border-radius: 5px; |
|
font-size: 16px; |
|
margin-bottom: 20px; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
tab1, tab2 = st.tabs(["Upload", "Analyze"]) |
|
|
|
with tab1: |
|
st.subheader("File Management") |
|
uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) |
|
if uploaded_file is not None: |
|
file_contents = uploaded_file.getvalue().decode('utf-8') |
|
if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): |
|
st.success(f"File {uploaded_file.name} uploaded and saved successfully") |
|
else: |
|
st.error("Error uploading file") |
|
|
|
st.markdown("---") |
|
|
|
st.subheader("Manage Uploaded Files") |
|
user_files = get_user_files(st.session_state.username, 'semantic') |
|
if user_files: |
|
for file in user_files: |
|
col1, col2 = st.columns([3, 1]) |
|
with col1: |
|
st.write(file['file_name']) |
|
with col2: |
|
if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): |
|
if delete_file(st.session_state.username, file['file_name'], 'semantic'): |
|
st.success(f"File {file['file_name']} deleted successfully") |
|
st.rerun() |
|
else: |
|
st.error(f"Error deleting file {file['file_name']}") |
|
else: |
|
st.info("No files uploaded yet.") |
|
|
|
with tab2: |
|
st.subheader("Select File for Analysis") |
|
user_files = get_user_files(st.session_state.username, 'semantic') |
|
file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] |
|
selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) |
|
|
|
if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): |
|
if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): |
|
file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') |
|
if file_contents: |
|
st.session_state.file_contents = file_contents |
|
with st.spinner("Analyzing..."): |
|
try: |
|
nlp_model = nlp_models[lang_code] |
|
concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) |
|
st.session_state.concept_graph = concept_graph |
|
st.session_state.entity_graph = entity_graph |
|
st.session_state.key_concepts = key_concepts |
|
st.success("Analysis completed successfully") |
|
except Exception as e: |
|
logger.error(f"Error during analysis: {str(e)}") |
|
st.error(f"Error during analysis: {str(e)}") |
|
else: |
|
st.error("Error loading file contents") |
|
else: |
|
st.error("Please select a file to analyze") |
|
|
|
|
|
with st.container(): |
|
col_chat, col_graph = st.columns([1, 1]) |
|
|
|
with col_chat: |
|
st.subheader("Chat with AI") |
|
|
|
chat_container = st.container() |
|
with chat_container: |
|
for message in st.session_state.semantic_chat_history: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) |
|
col1, col2 = st.columns([3, 1]) |
|
with col1: |
|
send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) |
|
with col2: |
|
clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) |
|
|
|
if send_button and user_input: |
|
st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) |
|
|
|
if user_input.startswith('/analyze_current'): |
|
response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) |
|
else: |
|
response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) |
|
|
|
st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) |
|
st.rerun() |
|
|
|
if clear_button: |
|
st.session_state.semantic_chat_history = [] |
|
st.rerun() |
|
|
|
with col_graph: |
|
st.subheader("Visualization") |
|
if 'key_concepts' in st.session_state: |
|
st.write("Key Concepts:") |
|
st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) |
|
|
|
tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) |
|
|
|
with tab_concept: |
|
if 'concept_graph' in st.session_state: |
|
st.pyplot(st.session_state.concept_graph) |
|
else: |
|
st.info("No concept graph available. Please analyze a document first.") |
|
|
|
with tab_entity: |
|
if 'entity_graph' in st.session_state: |
|
st.pyplot(st.session_state.entity_graph) |
|
else: |
|
st.info("No entity graph available. Please analyze a document first.") |