|
import streamlit as st
|
|
import logging
|
|
from io import BytesIO
|
|
import base64
|
|
from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
|
|
from .semantic_process import process_semantic_analysis
|
|
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
|
|
from ..database.database_oldFromV2 import (
|
|
initialize_mongodb_connection,
|
|
initialize_database_connections,
|
|
create_admin_user,
|
|
create_student_user,
|
|
get_user,
|
|
get_student_data,
|
|
store_file_contents,
|
|
retrieve_file_contents,
|
|
get_user_files,
|
|
delete_file,
|
|
store_application_request,
|
|
store_user_feedback,
|
|
store_morphosyntax_result,
|
|
store_semantic_result,
|
|
store_discourse_analysis_result,
|
|
store_chat_history,
|
|
export_analysis_and_chat,
|
|
get_user_analysis_summary,
|
|
get_user_recents_chats,
|
|
get_user_analysis_details
|
|
)
|
|
|
|
from ..utils.widget_utils import generate_unique_key
|
|
from .flexible_analysis_handler import FlexibleAnalysisHandler
|
|
|
|
semantic_float_init()
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
def get_translation(t, key, default):
|
|
return t.get(key, default)
|
|
|
|
def fig_to_base64(fig):
|
|
buf = BytesIO()
|
|
fig.savefig(buf, format='png')
|
|
buf.seek(0)
|
|
img_str = base64.b64encode(buf.getvalue()).decode()
|
|
return f'<img src="data:image/png;base64,{img_str}" />'
|
|
|
|
def display_semantic_interface(lang_code, nlp_models, t):
|
|
st.set_page_config(layout="wide")
|
|
|
|
if 'semantic_chatbot' not in st.session_state:
|
|
st.session_state.semantic_chatbot = initialize_chatbot('semantic')
|
|
if 'semantic_chat_history' not in st.session_state:
|
|
st.session_state.semantic_chat_history = []
|
|
if 'show_graph' not in st.session_state:
|
|
st.session_state.show_graph = False
|
|
if 'graph_id' not in st.session_state:
|
|
st.session_state.graph_id = None
|
|
|
|
st.header(t['title'])
|
|
|
|
|
|
text_input = st.text_area(
|
|
t['text_input_label'],
|
|
height=150,
|
|
placeholder=t['text_input_placeholder'],
|
|
)
|
|
|
|
|
|
uploaded_file = st.file_uploader(t['file_uploader'], type=['txt'])
|
|
|
|
if st.button(t['analyze_button']):
|
|
if text_input or uploaded_file is not None:
|
|
if uploaded_file:
|
|
text_content = uploaded_file.getvalue().decode('utf-8')
|
|
else:
|
|
text_content = text_input
|
|
|
|
|
|
analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code)
|
|
|
|
|
|
st.session_state.semantic_result = analysis_result
|
|
|
|
|
|
display_semantic_results(st.session_state.semantic_result, lang_code, t)
|
|
|
|
|
|
if store_semantic_result(st.session_state.username, text_content, analysis_result):
|
|
st.success(t['success_message'])
|
|
else:
|
|
st.error(t['error_message'])
|
|
else:
|
|
st.warning(t['warning_message'])
|
|
|
|
elif 'semantic_result' in st.session_state:
|
|
|
|
|
|
display_semantic_results(st.session_state.semantic_result, lang_code, t)
|
|
|
|
else:
|
|
st.info(t['initial_message'])
|
|
|
|
def display_semantic_results(result, lang_code, t):
|
|
if result is None:
|
|
st.warning(t['no_results'])
|
|
return
|
|
|
|
|
|
with st.expander(t['key_concepts'], expanded=True):
|
|
concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']])
|
|
st.write(concept_text)
|
|
|
|
|
|
with st.expander(t['conceptual_relations'], expanded=True):
|
|
st.pyplot(result['relations_graph'])
|
|
|