|
import streamlit as st
|
|
import logging
|
|
from .semantic_process import process_semantic_analysis
|
|
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
|
|
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
|
|
from ..utils.widget_utils import generate_unique_key
|
|
|
|
from .semantic_float_reset import *
|
|
|
|
logger = logging.getLogger(__name__)
|
|
semantic_float_init()
|
|
|
|
def get_translation(t, key, default):
|
|
return t.get(key, default)
|
|
|
|
def display_semantic_interface(lang_code, nlp_models, t):
|
|
|
|
if 'semantic_chatbot' not in st.session_state:
|
|
st.session_state.semantic_chatbot = initialize_chatbot('semantic')
|
|
if 'semantic_chat_history' not in st.session_state:
|
|
st.session_state.semantic_chat_history = []
|
|
|
|
|
|
if 'graph_visible' not in st.session_state:
|
|
st.session_state.graph_visible = False
|
|
if 'graph_content' not in st.session_state:
|
|
st.session_state.graph_content = ""
|
|
|
|
st.markdown("""
|
|
<style>
|
|
.chat-message {
|
|
margin-bottom: 10px;
|
|
padding: 5px;
|
|
border-radius: 5px;
|
|
}
|
|
.user-message {
|
|
background-color: #e6f3ff;
|
|
text-align: right;
|
|
}
|
|
.assistant-message {
|
|
background-color: #f0f0f0;
|
|
text-align: left;
|
|
}
|
|
.semantic-float {
|
|
position: fixed;
|
|
right: 20px;
|
|
top: 50%;
|
|
transform: translateY(-50%);
|
|
width: 540px;
|
|
height: 540px;
|
|
z-index: 1000;
|
|
background-color: white;
|
|
border: 1px solid #ddd;
|
|
border-radius: 5px;
|
|
padding: 10px;
|
|
overflow: hidden;
|
|
box-shadow: 0 0 10px rgba(0,0,0,0.1);
|
|
}
|
|
.semantic-float img {
|
|
width: 100%;
|
|
height: auto;
|
|
max-height: 440px;
|
|
object-fit: contain;
|
|
}
|
|
.chat-input {
|
|
position: fixed;
|
|
bottom: 20px;
|
|
left: 20px;
|
|
right: 20px;
|
|
z-index: 1000;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
st.markdown(f"<div class='semantic-initial-message'>{t['semantic_initial_message']}</div>", unsafe_allow_html=True)
|
|
|
|
tab1, tab2 = st.tabs(["Upload", "Analyze"])
|
|
|
|
with tab1:
|
|
st.subheader("File Management")
|
|
uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
|
|
if uploaded_file is not None:
|
|
file_contents = uploaded_file.getvalue().decode('utf-8')
|
|
if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
|
|
st.success(f"File {uploaded_file.name} uploaded and saved successfully")
|
|
else:
|
|
st.error("Error uploading file")
|
|
|
|
st.markdown("---")
|
|
st.subheader("Manage Uploaded Files")
|
|
user_files = get_user_files(st.session_state.username, 'semantic')
|
|
if user_files:
|
|
for file in user_files:
|
|
col1, col2 = st.columns([3, 1])
|
|
with col1:
|
|
st.write(file['file_name'])
|
|
with col2:
|
|
if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
|
|
if delete_file(st.session_state.username, file['file_name'], 'semantic'):
|
|
st.success(f"File {file['file_name']} deleted successfully")
|
|
st.rerun()
|
|
else:
|
|
st.error(f"Error deleting file {file['file_name']}")
|
|
else:
|
|
st.info("No files uploaded yet.")
|
|
|
|
with tab2:
|
|
st.subheader("Semantic Analysis")
|
|
|
|
st.subheader("File Selection and Analysis")
|
|
user_files = get_user_files(st.session_state.username, 'semantic')
|
|
file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
|
|
selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
|
|
|
|
if st.button("Analyze Document"):
|
|
if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
|
|
file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
|
|
if file_contents:
|
|
with st.spinner("Analyzing..."):
|
|
try:
|
|
nlp_model = nlp_models[lang_code]
|
|
concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
|
|
st.session_state.concept_graph = concept_graph
|
|
st.session_state.entity_graph = entity_graph
|
|
st.session_state.key_concepts = key_concepts
|
|
st.session_state.current_file_contents = file_contents
|
|
st.success("Analysis completed successfully")
|
|
|
|
|
|
logger.debug(f"Concept graph base64 (first 100 chars): {concept_graph[:100]}")
|
|
st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}")
|
|
|
|
|
|
st.session_state.graph_content = f"""
|
|
<h3>Key Concepts:</h3>
|
|
<p>{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}</p>
|
|
<img src="data:image/png;base64,{concept_graph}" alt="Concept Graph" style="width:100%; height:auto;"/>
|
|
"""
|
|
if 'graph_id' not in st.session_state:
|
|
st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right")
|
|
else:
|
|
update_float_content(st.session_state.graph_id, st.session_state.graph_content)
|
|
toggle_float_visibility(st.session_state.graph_id, True)
|
|
st.session_state.graph_visible = True
|
|
|
|
|
|
logger.debug(f"Graph ID: {st.session_state.graph_id}")
|
|
logger.debug(f"Graph visible: {st.session_state.graph_visible}")
|
|
|
|
|
|
st.image(f"data:image/png;base64,{concept_graph}", caption="Concept Graph (Debug View)", use_column_width=True)
|
|
except Exception as e:
|
|
logger.error(f"Error during analysis: {str(e)}")
|
|
st.error(f"Error during analysis: {str(e)}")
|
|
st.session_state.concept_graph = None
|
|
st.session_state.entity_graph = None
|
|
st.session_state.key_concepts = []
|
|
else:
|
|
st.error("Error loading file contents")
|
|
else:
|
|
st.error("Please select a file to analyze")
|
|
|
|
st.subheader("Chat with AI")
|
|
|
|
|
|
for message in st.session_state.semantic_chat_history:
|
|
message_class = "user-message" if message["role"] == "user" else "assistant-message"
|
|
st.markdown(f'<div class="chat-message {message_class}">{message["content"]}</div>', unsafe_allow_html=True)
|
|
|
|
|
|
st.markdown('<div class="chat-input">', unsafe_allow_html=True)
|
|
user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
|
|
col1, col2, col3 = st.columns([3, 1, 1])
|
|
with col1:
|
|
send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
|
|
with col2:
|
|
clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
|
|
with col3:
|
|
if 'graph_id' in st.session_state:
|
|
toggle_button = st.button("Toggle Graph", key="toggle_graph")
|
|
if toggle_button:
|
|
st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
|
|
toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
|
|
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
if send_button and user_input:
|
|
st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
|
|
if user_input.startswith('/analyze_current'):
|
|
response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
|
|
else:
|
|
response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
|
|
st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
|
|
st.rerun()
|
|
|
|
if clear_button:
|
|
st.session_state.semantic_chat_history = []
|
|
st.rerun()
|
|
|
|
|
|
if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
|
|
toggle_float_visibility(st.session_state.graph_id, True)
|
|
|
|
|
|
if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
|
|
st.markdown(
|
|
f"""
|
|
<div class="semantic-float">
|
|
{st.session_state.graph_content}
|
|
</div>
|
|
""",
|
|
unsafe_allow_html=True
|
|
) |