|
|
|
|
|
|
|
import streamlit as st |
|
import re |
|
import io |
|
from io import BytesIO |
|
import pandas as pd |
|
import numpy as np |
|
import time |
|
import matplotlib.pyplot as plt |
|
from datetime import datetime, timedelta |
|
from spacy import displacy |
|
import random |
|
import base64 |
|
import seaborn as sns |
|
import logging |
|
|
|
|
|
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis |
|
from ..database.semantic_mongo_db import get_student_semantic_analysis |
|
from ..database.discourse_mongo_db import get_student_discourse_analysis |
|
from ..database.chat_mongo_db import get_chat_history |
|
from ..database.current_situation_mongo_db import get_current_situation_analysis |
|
from ..database.claude_recommendations_mongo_db import get_claude_recommendations |
|
|
|
|
|
from ..utils.widget_utils import generate_unique_key |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def display_student_activities(username: str, lang_code: str, t: dict): |
|
""" |
|
Muestra todas las actividades del estudiante |
|
Args: |
|
username: Nombre del estudiante |
|
lang_code: Código del idioma |
|
t: Diccionario de traducciones |
|
""" |
|
try: |
|
st.header(t.get('activities_title', 'Mis Actividades')) |
|
|
|
|
|
tabs = st.tabs([ |
|
t.get('current_situation_activities', 'Mi Situación Actual'), |
|
t.get('morpho_activities', 'Análisis Morfosintáctico'), |
|
t.get('semantic_activities', 'Análisis Semántico'), |
|
t.get('discourse_activities', 'Análisis del Discurso'), |
|
t.get('chat_activities', 'Conversaciones con el Asistente') |
|
]) |
|
|
|
|
|
with tabs[0]: |
|
display_current_situation_activities(username, t) |
|
|
|
|
|
with tabs[1]: |
|
display_morphosyntax_activities(username, t) |
|
|
|
|
|
with tabs[2]: |
|
display_semantic_activities(username, t) |
|
|
|
|
|
with tabs[3]: |
|
display_discourse_activities(username, t) |
|
|
|
|
|
with tabs[4]: |
|
display_chat_activities(username, t) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando actividades: {str(e)}") |
|
st.error(t.get('error_loading_activities', 'Error al cargar las actividades')) |
|
|
|
|
|
|
|
|
|
def display_current_situation_activities(username: str, t: dict): |
|
""" |
|
Muestra análisis de situación actual junto con las recomendaciones de Claude |
|
unificando la información de ambas colecciones y emparejándolas por cercanía temporal. |
|
""" |
|
try: |
|
|
|
logger.info(f"Recuperando análisis de situación actual para {username}") |
|
situation_analyses = get_current_situation_analysis(username, limit=10) |
|
|
|
|
|
if situation_analyses: |
|
logger.info(f"Recuperados {len(situation_analyses)} análisis de situación") |
|
|
|
for i, analysis in enumerate(situation_analyses): |
|
logger.info(f"Análisis #{i+1}: Claves disponibles: {list(analysis.keys())}") |
|
if 'metrics' in analysis: |
|
logger.info(f"Métricas disponibles: {list(analysis['metrics'].keys())}") |
|
else: |
|
logger.warning("No se encontraron análisis de situación actual") |
|
|
|
logger.info(f"Recuperando recomendaciones de Claude para {username}") |
|
claude_recommendations = get_claude_recommendations(username) |
|
|
|
if claude_recommendations: |
|
logger.info(f"Recuperadas {len(claude_recommendations)} recomendaciones de Claude") |
|
else: |
|
logger.warning("No se encontraron recomendaciones de Claude") |
|
|
|
|
|
if not situation_analyses and not claude_recommendations: |
|
logger.info("No se encontraron análisis de situación actual ni recomendaciones") |
|
st.info(t.get('no_current_situation', 'No hay análisis de situación actual registrados')) |
|
return |
|
|
|
|
|
logger.info("Creando emparejamientos temporales de análisis") |
|
|
|
|
|
situation_times = [] |
|
for analysis in situation_analyses: |
|
if 'timestamp' in analysis: |
|
try: |
|
timestamp_str = analysis['timestamp'] |
|
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00')) |
|
situation_times.append((dt, analysis)) |
|
except Exception as e: |
|
logger.error(f"Error parseando timestamp de situación: {str(e)}") |
|
|
|
recommendation_times = [] |
|
for recommendation in claude_recommendations: |
|
if 'timestamp' in recommendation: |
|
try: |
|
timestamp_str = recommendation['timestamp'] |
|
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00')) |
|
recommendation_times.append((dt, recommendation)) |
|
except Exception as e: |
|
logger.error(f"Error parseando timestamp de recomendación: {str(e)}") |
|
|
|
|
|
situation_times.sort(key=lambda x: x[0], reverse=True) |
|
recommendation_times.sort(key=lambda x: x[0], reverse=True) |
|
|
|
|
|
combined_items = [] |
|
|
|
|
|
for sit_time, situation in situation_times: |
|
|
|
best_match = None |
|
min_diff = timedelta(minutes=30) |
|
best_rec_time = None |
|
|
|
for rec_time, recommendation in recommendation_times: |
|
time_diff = abs(sit_time - rec_time) |
|
if time_diff < min_diff: |
|
min_diff = time_diff |
|
best_match = recommendation |
|
best_rec_time = rec_time |
|
|
|
|
|
if best_match: |
|
timestamp_key = sit_time.isoformat() |
|
combined_items.append((timestamp_key, { |
|
'situation': situation, |
|
'recommendation': best_match, |
|
'time_diff': min_diff.total_seconds() |
|
})) |
|
|
|
recommendation_times = [(t, r) for t, r in recommendation_times if t != best_rec_time] |
|
logger.info(f"Emparejado: Diagnóstico {sit_time} con Recomendación {best_rec_time} (diferencia: {min_diff})") |
|
else: |
|
|
|
timestamp_key = sit_time.isoformat() |
|
combined_items.append((timestamp_key, { |
|
'situation': situation |
|
})) |
|
logger.info(f"Sin emparejar: Diagnóstico {sit_time} sin recomendación cercana") |
|
|
|
|
|
for rec_time, recommendation in recommendation_times: |
|
timestamp_key = rec_time.isoformat() |
|
combined_items.append((timestamp_key, { |
|
'recommendation': recommendation |
|
})) |
|
logger.info(f"Sin emparejar: Recomendación {rec_time} sin diagnóstico cercano") |
|
|
|
|
|
combined_items.sort(key=lambda x: x[0], reverse=True) |
|
|
|
logger.info(f"Procesando {len(combined_items)} elementos combinados") |
|
|
|
|
|
for i, (timestamp_key, analysis_pair) in enumerate(combined_items): |
|
try: |
|
|
|
situation_data = analysis_pair.get('situation', {}) |
|
recommendation_data = analysis_pair.get('recommendation', {}) |
|
time_diff = analysis_pair.get('time_diff') |
|
|
|
|
|
if not situation_data and not recommendation_data: |
|
continue |
|
|
|
|
|
text_to_show = situation_data.get('text', recommendation_data.get('text', '')) |
|
text_type = situation_data.get('text_type', recommendation_data.get('text_type', '')) |
|
|
|
|
|
try: |
|
|
|
dt = datetime.fromisoformat(timestamp_key) |
|
formatted_date = dt.strftime("%d/%m/%Y %H:%M:%S") |
|
except Exception as date_error: |
|
logger.error(f"Error formateando fecha: {str(date_error)}") |
|
formatted_date = timestamp_key |
|
|
|
|
|
title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}" |
|
if text_type: |
|
text_type_display = { |
|
'academic_article': t.get('academic_article', 'Artículo académico'), |
|
'student_essay': t.get('student_essay', 'Trabajo universitario'), |
|
'general_communication': t.get('general_communication', 'Comunicación general') |
|
}.get(text_type, text_type) |
|
title += f" - {text_type_display}" |
|
|
|
|
|
if time_diff is not None: |
|
if time_diff < 60: |
|
title += f" 🔄 (emparejados)" |
|
else: |
|
title += f" 🔄 (emparejados, diferencia: {int(time_diff//60)} min)" |
|
|
|
|
|
expander_id = f"analysis_{i}_{timestamp_key.replace(':', '_')}" |
|
|
|
|
|
with st.expander(title, expanded=False): |
|
|
|
st.subheader(t.get('analyzed_text', 'Texto analizado')) |
|
st.text_area( |
|
"Text Content", |
|
value=text_to_show, |
|
height=100, |
|
disabled=True, |
|
label_visibility="collapsed", |
|
key=f"text_area_{expander_id}" |
|
) |
|
|
|
|
|
diagnosis_tab, recommendations_tab = st.tabs([ |
|
t.get('diagnosis_tab', 'Diagnóstico'), |
|
t.get('recommendations_tab', 'Recomendaciones') |
|
]) |
|
|
|
|
|
with diagnosis_tab: |
|
if situation_data and 'metrics' in situation_data: |
|
metrics = situation_data['metrics'] |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
st.subheader(t.get('key_metrics', 'Métricas clave')) |
|
|
|
|
|
for metric_name, metric_data in metrics.items(): |
|
try: |
|
|
|
score = None |
|
if isinstance(metric_data, dict): |
|
|
|
if 'normalized_score' in metric_data: |
|
score = metric_data['normalized_score'] |
|
elif 'score' in metric_data: |
|
score = metric_data['score'] |
|
elif 'value' in metric_data: |
|
score = metric_data['value'] |
|
elif isinstance(metric_data, (int, float)): |
|
score = metric_data |
|
|
|
if score is not None: |
|
|
|
if isinstance(score, (int, float)): |
|
|
|
if score < 0.5: |
|
emoji = "🔴" |
|
color = "#ffcccc" |
|
elif score < 0.75: |
|
emoji = "🟡" |
|
color = "#ffffcc" |
|
else: |
|
emoji = "🟢" |
|
color = "#ccffcc" |
|
|
|
|
|
st.markdown(f""" |
|
<div style="background-color:{color}; padding:10px; border-radius:5px; margin-bottom:10px;"> |
|
<b>{emoji} {metric_name.capitalize()}:</b> {score:.2f} |
|
</div> |
|
""", unsafe_allow_html=True) |
|
else: |
|
|
|
st.markdown(f""" |
|
<div style="background-color:#f0f0f0; padding:10px; border-radius:5px; margin-bottom:10px;"> |
|
<b>ℹ️ {metric_name.capitalize()}:</b> {str(score)} |
|
</div> |
|
""", unsafe_allow_html=True) |
|
except Exception as e: |
|
logger.error(f"Error procesando métrica {metric_name}: {str(e)}") |
|
|
|
|
|
with col2: |
|
st.subheader(t.get('details', 'Detalles')) |
|
|
|
|
|
for metric_name, metric_data in metrics.items(): |
|
try: |
|
if isinstance(metric_data, dict): |
|
|
|
details = None |
|
if 'details' in metric_data and metric_data['details']: |
|
details = metric_data['details'] |
|
else: |
|
|
|
details = {k: v for k, v in metric_data.items() |
|
if k not in ['normalized_score', 'score', 'value']} |
|
|
|
if details: |
|
st.write(f"**{metric_name.capitalize()}**") |
|
st.json(details, expanded=False) |
|
except Exception as e: |
|
logger.error(f"Error mostrando detalles de {metric_name}: {str(e)}") |
|
else: |
|
st.info(t.get('no_diagnosis', 'No hay datos de diagnóstico disponibles')) |
|
|
|
|
|
with recommendations_tab: |
|
if recommendation_data and 'recommendations' in recommendation_data: |
|
st.markdown(f""" |
|
<div style="padding: 20px; border-radius: 10px; |
|
background-color: #f8f9fa; margin-bottom: 20px;"> |
|
{recommendation_data['recommendations']} |
|
</div> |
|
""", unsafe_allow_html=True) |
|
elif recommendation_data and 'feedback' in recommendation_data: |
|
st.markdown(f""" |
|
<div style="padding: 20px; border-radius: 10px; |
|
background-color: #f8f9fa; margin-bottom: 20px;"> |
|
{recommendation_data['feedback']} |
|
</div> |
|
""", unsafe_allow_html=True) |
|
else: |
|
st.info(t.get('no_recommendations', 'No hay recomendaciones disponibles')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error procesando par de análisis: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando actividades de situación actual: {str(e)}") |
|
st.error(t.get('error_current_situation', 'Error al mostrar análisis de situación actual')) |
|
|
|
|
|
|
|
def display_morphosyntax_activities(username: str, t: dict): |
|
"""Muestra actividades de análisis morfosintáctico""" |
|
try: |
|
analyses = get_student_morphosyntax_analysis(username) |
|
if not analyses: |
|
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados')) |
|
return |
|
|
|
for analysis in analyses: |
|
with st.expander( |
|
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", |
|
expanded=False |
|
): |
|
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:") |
|
st.write(analysis['text']) |
|
|
|
if 'arc_diagrams' in analysis: |
|
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos')) |
|
for diagram in analysis['arc_diagrams']: |
|
st.write(diagram, unsafe_allow_html=True) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}") |
|
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico')) |
|
|
|
|
|
|
|
|
|
def display_semantic_activities(username: str, t: dict): |
|
"""Muestra actividades de análisis semántico""" |
|
try: |
|
logger.info(f"Recuperando análisis semántico para {username}") |
|
analyses = get_student_semantic_analysis(username) |
|
|
|
if not analyses: |
|
logger.info("No se encontraron análisis semánticos") |
|
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados')) |
|
return |
|
|
|
logger.info(f"Procesando {len(analyses)} análisis semánticos") |
|
|
|
for analysis in analyses: |
|
try: |
|
|
|
if not all(key in analysis for key in ['timestamp', 'concept_graph']): |
|
logger.warning(f"Análisis incompleto: {analysis.keys()}") |
|
continue |
|
|
|
|
|
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) |
|
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") |
|
|
|
|
|
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): |
|
|
|
if analysis.get('concept_graph'): |
|
try: |
|
|
|
logger.debug("Decodificando gráfico de conceptos") |
|
image_data = analysis['concept_graph'] |
|
|
|
|
|
if isinstance(image_data, bytes): |
|
image_bytes = image_data |
|
else: |
|
|
|
image_bytes = base64.b64decode(image_data) |
|
|
|
logger.debug(f"Longitud de bytes de imagen: {len(image_bytes)}") |
|
|
|
|
|
st.image( |
|
image_bytes, |
|
caption=t.get('concept_network', 'Red de Conceptos'), |
|
use_column_width=True |
|
) |
|
logger.debug("Gráfico mostrado exitosamente") |
|
|
|
except Exception as img_error: |
|
logger.error(f"Error procesando gráfico: {str(img_error)}") |
|
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) |
|
else: |
|
st.info(t.get('no_graph', 'No hay visualización disponible')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error procesando análisis individual: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando análisis semántico: {str(e)}") |
|
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico')) |
|
|
|
|
|
|
|
def display_discourse_activities(username: str, t: dict): |
|
"""Muestra actividades de análisis del discurso""" |
|
try: |
|
logger.info(f"Recuperando análisis del discurso para {username}") |
|
analyses = get_student_discourse_analysis(username) |
|
|
|
if not analyses: |
|
logger.info("No se encontraron análisis del discurso") |
|
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados')) |
|
return |
|
|
|
logger.info(f"Procesando {len(analyses)} análisis del discurso") |
|
for analysis in analyses: |
|
try: |
|
|
|
if not all(key in analysis for key in ['timestamp', 'combined_graph']): |
|
logger.warning(f"Análisis incompleto: {analysis.keys()}") |
|
continue |
|
|
|
|
|
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) |
|
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") |
|
|
|
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): |
|
if analysis['combined_graph']: |
|
logger.debug("Decodificando gráfico combinado") |
|
try: |
|
image_bytes = base64.b64decode(analysis['combined_graph']) |
|
st.image(image_bytes, use_column_width=True) |
|
logger.debug("Gráfico mostrado exitosamente") |
|
except Exception as img_error: |
|
logger.error(f"Error decodificando imagen: {str(img_error)}") |
|
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) |
|
else: |
|
st.info(t.get('no_visualization', 'No hay visualización comparativa disponible')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error procesando análisis individual: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando análisis del discurso: {str(e)}") |
|
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso')) |
|
|
|
|
|
def display_chat_activities(username: str, t: dict): |
|
""" |
|
Muestra historial de conversaciones del chat |
|
""" |
|
try: |
|
|
|
chat_history = get_chat_history( |
|
username=username, |
|
analysis_type='sidebar', |
|
limit=50 |
|
) |
|
|
|
if not chat_history: |
|
st.info(t.get('no_chat_history', 'No hay conversaciones registradas')) |
|
return |
|
|
|
for chat in reversed(chat_history): |
|
try: |
|
|
|
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00')) |
|
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") |
|
|
|
with st.expander( |
|
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}", |
|
expanded=False |
|
): |
|
if 'messages' in chat and chat['messages']: |
|
|
|
for message in chat['messages']: |
|
role = message.get('role', 'unknown') |
|
content = message.get('content', '') |
|
|
|
|
|
with st.chat_message(role): |
|
st.markdown(content) |
|
|
|
|
|
st.divider() |
|
else: |
|
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido')) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando conversación: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando historial del chat: {str(e)}") |
|
st.error(t.get('error_chat', 'Error al mostrar historial del chat')) |
|
|
|
|
|
def display_discourse_comparison(analysis: dict, t: dict): |
|
"""Muestra la comparación de análisis del discurso""" |
|
st.subheader(t.get('comparison_results', 'Resultados de la comparación')) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") |
|
df1 = pd.DataFrame(analysis['key_concepts1']) |
|
st.dataframe(df1) |
|
|
|
with col2: |
|
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") |
|
df2 = pd.DataFrame(analysis['key_concepts2']) |
|
st.dataframe(df2) |