v3 / modules /text_analysis /morpho_analysis-Back1910-25-9-24.py
AIdeaText's picture
Upload 216 files
c58df45 verified
import spacy
from spacy import displacy
from streamlit.components.v1 import html
import base64
from collections import Counter
import re
from ..utils.widget_utils import generate_unique_key
import logging
logger = logging.getLogger(__name__)
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', # Light Salmon
'ADP': '#98FB98', # Pale Green
'ADV': '#87CEFA', # Light Sky Blue
'AUX': '#DDA0DD', # Plum
'CCONJ': '#F0E68C', # Khaki
'DET': '#FFB6C1', # Light Pink
'INTJ': '#FF6347', # Tomato
'NOUN': '#90EE90', # Light Green
'NUM': '#FAFAD2', # Light Goldenrod Yellow
'PART': '#D3D3D3', # Light Gray
'PRON': '#FFA500', # Orange
'PROPN': '#20B2AA', # Light Sea Green
'SCONJ': '#DEB887', # Burlywood
'SYM': '#7B68EE', # Medium Slate Blue
'VERB': '#FF69B4', # Hot Pink
'X': '#A9A9A9', # Dark Gray
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo',
'ADP': 'Preposición',
'ADV': 'Adverbio',
'AUX': 'Auxiliar',
'CCONJ': 'Conjunción Coordinante',
'DET': 'Determinante',
'INTJ': 'Interjección',
'NOUN': 'Sustantivo',
'NUM': 'Número',
'PART': 'Partícula',
'PRON': 'Pronombre',
'PROPN': 'Nombre Propio',
'SCONJ': 'Conjunción Subordinante',
'SYM': 'Símbolo',
'VERB': 'Verbo',
'X': 'Otro',
},
'en': {
'ADJ': 'Adjective',
'ADP': 'Preposition',
'ADV': 'Adverb',
'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction',
'DET': 'Determiner',
'INTJ': 'Interjection',
'NOUN': 'Noun',
'NUM': 'Number',
'PART': 'Particle',
'PRON': 'Pronoun',
'PROPN': 'Proper Noun',
'SCONJ': 'Subordinating Conjunction',
'SYM': 'Symbol',
'VERB': 'Verb',
'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif',
'ADP': 'Préposition',
'ADV': 'Adverbe',
'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination',
'DET': 'Déterminant',
'INTJ': 'Interjection',
'NOUN': 'Nom',
'NUM': 'Nombre',
'PART': 'Particule',
'PRON': 'Pronom',
'PROPN': 'Nom Propre',
'SCONJ': 'Conjonction de Subordination',
'SYM': 'Symbole',
'VERB': 'Verbe',
'X': 'Autre',
}
}
def generate_arc_diagram(doc):
arc_diagrams = []
for sent in doc.sents:
words = [token.text for token in sent]
# Calculamos el ancho del SVG basado en la longitud de la oración
svg_width = max(100, len(words) * 120)
# Altura fija para cada oración
svg_height = 300 # Controla la altura del SVG
# Renderizamos el diagrama de dependencias
html = displacy.render(sent, style="dep", options={
"add_lemma":False, # Introduced in version 2.2.4, this argument prints the lemma’s in a separate row below the token texts.
"arrow_spacing": 12, #This argument is used for adjusting the spacing between arrows in px to avoid overlaps.
"arrow_width": 2, #This argument is used for adjusting the width of arrow head in px.
"arrow_stroke": 2, #This argument is used for adjusting the width of arrow path in px.
"collapse_punct": True, #It attaches punctuation to the tokens.
"collapse_phrases": False, # This argument merges the noun phrases into one token.
"compact":False, # If you will take this argument as true, you will get the “Compact mode” with square arrows that takes up less space.
"color": "#ffffff",
"bg": "#0d6efd",
"compact": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
"distance": 100, # Aumentamos la distancia entre palabras
"fine_grained": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
"offset_x": 0, # This argument is used for spacing on left side of the SVG in px.
"word_spacing": 25, #This argument is used for adjusting the vertical spacing between words and arcs in px.
})
# Ajustamos el tamaño del SVG y el viewBox
html = re.sub(r'width="(\d+)"', f'width="{svg_width}"', html)
html = re.sub(r'height="(\d+)"', f'height="{svg_height}"', html)
html = re.sub(r'<svg', f'<svg viewBox="0 0 {svg_width} {svg_height}"', html)
#html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html)
#html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html)
# Movemos todo el contenido hacia abajo
#html = html.replace('<g', f'<g transform="translate(50, {svg_height - 200})"')
# Movemos todo el contenido hacia arriba para eliminar el espacio vacío en la parte superior
html = re.sub(r'<g transform="translate\((\d+),(\d+)\)"',
lambda m: f'<g transform="translate({m.group(1)},10)"', html)
# Ajustamos la posición de las etiquetas de las palabras
html = html.replace('dy="1em"', 'dy="-1em"')
# Ajustamos la posición de las etiquetas POS
html = html.replace('dy="0.25em"', 'dy="-3em"')
# Aumentamos el tamaño de la fuente para las etiquetas POS
html = html.replace('.displacy-tag {', '.displacy-tag { font-size: 14px;')
# Rotamos las etiquetas de las palabras para mejorar la legibilidad
#html = html.replace('class="displacy-label"', 'class="displacy-label" transform="rotate(30)"')
arc_diagrams.append(html)
return arc_diagrams
##################################################################################################################################
def perform_advanced_morphosyntactic_analysis(text, nlp):
logger.info(f"Performing advanced morphosyntactic analysis on text: {text[:50]}...")
try:
doc = nlp(text)
arc_diagram = generate_arc_diagram(doc)
logger.info(f"Arc diagram generated: {arc_diagram is not None}")
logger.debug(f"Arc diagram content: {arc_diagram[:500] if arc_diagram else 'None'}")
# Asegurar que arc_diagram sea una lista
if not isinstance(arc_diagram, list):
logger.warning("Warning: arc_diagram is not a list. Type: %s", type(arc_diagram))
arc_diagram = [arc_diagram] if arc_diagram else []
result = {
'arc_diagram': arc_diagram,
'pos_analysis': perform_pos_analysis(doc),
'morphological_analysis': perform_morphological_analysis(doc),
'sentence_structure': analyze_sentence_structure(doc),
'repeated_words': highlight_repeated_words(doc)
}
logger.info(f"Analysis result keys: {result.keys()}")
logger.info(f"Arc diagram in result: {result['arc_diagram'] is not None}")
return result
except Exception as e:
logger.error(f"Error in perform_advanced_morphosyntactic_analysis: {str(e)}", exc_info=True)
return None
###########################################################
def perform_pos_analysis(doc):
pos_counts = Counter(token.pos_ for token in doc)
total_tokens = len(doc)
pos_analysis = []
for pos, count in pos_counts.items():
percentage = (count / total_tokens) * 100
pos_analysis.append({
'pos': pos,
'count': count,
'percentage': round(percentage, 2),
'examples': [token.text for token in doc if token.pos_ == pos][:5] # Primeros 5 ejemplos
})
return sorted(pos_analysis, key=lambda x: x['count'], reverse=True)
def perform_morphological_analysis(doc):
return [{
'text': token.text,
'lemma': token.lemma_,
'pos': token.pos_,
'tag': token.tag_,
'dep': token.dep_,
'shape': token.shape_,
'is_alpha': token.is_alpha,
'is_stop': token.is_stop,
'morph': str(token.morph)
} for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']]
def analyze_sentence_structure(doc):
return [{
'text': sent.text,
'root': sent.root.text,
'root_pos': sent.root.pos_,
'num_tokens': len(sent),
'num_words': len([token for token in sent if token.is_alpha]),
'subjects': [token.text for token in sent if "subj" in token.dep_],
'objects': [token.text for token in sent if "obj" in token.dep_],
'verbs': [token.text for token in sent if token.pos_ == "VERB"]
} for sent in doc.sents]
def get_repeated_words_colors(doc):
word_counts = Counter(token.text.lower() for token in doc if token.pos_ != 'PUNCT')
repeated_words = {word: count for word, count in word_counts.items() if count > 1}
word_colors = {}
for token in doc:
if token.text.lower() in repeated_words:
word_colors[token.text.lower()] = POS_COLORS.get(token.pos_, '#FFFFFF')
return word_colors
def highlight_repeated_words(doc):
word_colors = get_repeated_words_colors(doc)
highlighted_text = []
for token in doc:
if token.text.lower() in word_colors:
color = word_colors[token.text.lower()]
highlighted_text.append(f'<span style="background-color: {color};">{token.text}</span>')
else:
highlighted_text.append(token.text)
return ' '.join(highlighted_text)
# Exportar todas las funciones y variables necesarias
__all__ = [
'get_repeated_words_colors',
'highlight_repeated_words',
'generate_arc_diagram',
'perform_pos_analysis',
'perform_morphological_analysis',
'analyze_sentence_structure',
'perform_advanced_morphosyntactic_analysis',
'POS_COLORS',
'POS_TRANSLATIONS'
]