Update modules/studentact/current_situation_analysis.py
Browse files
modules/studentact/current_situation_analysis.py
CHANGED
@@ -23,35 +23,83 @@ logging.basicConfig(
|
|
23 |
# 3. Obtener el logger espec铆fico para este m贸dulo
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def analyze_text_dimensions(doc):
|
27 |
"""
|
28 |
-
Analiza las dimensiones principales del texto.
|
29 |
"""
|
30 |
try:
|
31 |
-
#
|
32 |
vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
|
33 |
-
|
34 |
-
# An谩lisis de estructura
|
35 |
struct_score = analyze_structure(doc)
|
36 |
-
|
37 |
-
# An谩lisis de cohesi贸n
|
38 |
cohesion_score = analyze_cohesion(doc)
|
39 |
-
|
40 |
-
# An谩lisis de claridad
|
41 |
clarity_score, clarity_details = analyze_clarity(doc)
|
42 |
|
43 |
-
|
|
|
44 |
'vocabulary': {
|
45 |
'normalized_score': vocab_score,
|
46 |
'details': vocab_details
|
47 |
},
|
48 |
'structure': {
|
49 |
'normalized_score': struct_score,
|
50 |
-
'details': None
|
51 |
},
|
52 |
'cohesion': {
|
53 |
'normalized_score': cohesion_score,
|
54 |
-
'details': None
|
55 |
},
|
56 |
'clarity': {
|
57 |
'normalized_score': clarity_score,
|
@@ -59,6 +107,20 @@ def analyze_text_dimensions(doc):
|
|
59 |
}
|
60 |
}
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
except Exception as e:
|
63 |
logger.error(f"Error en analyze_text_dimensions: {str(e)}")
|
64 |
return {
|
@@ -70,6 +132,8 @@ def analyze_text_dimensions(doc):
|
|
70 |
|
71 |
|
72 |
|
|
|
|
|
73 |
def analyze_clarity(doc):
|
74 |
"""
|
75 |
Analiza la claridad del texto considerando m煤ltiples factores.
|
|
|
23 |
# 3. Obtener el logger espec铆fico para este m贸dulo
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
26 |
+
#########################################################################
|
27 |
+
|
28 |
+
def correlate_metrics(scores):
|
29 |
+
"""
|
30 |
+
Ajusta los scores para mantener correlaciones l贸gicas entre m茅tricas.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
scores: dict con scores iniciales de vocabulario, estructura, cohesi贸n y claridad
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
dict con scores ajustados
|
37 |
+
"""
|
38 |
+
try:
|
39 |
+
# 1. Correlaci贸n estructura-cohesi贸n
|
40 |
+
# La cohesi贸n no puede ser menor que estructura * 0.7
|
41 |
+
min_cohesion = scores['structure']['normalized_score'] * 0.7
|
42 |
+
if scores['cohesion']['normalized_score'] < min_cohesion:
|
43 |
+
scores['cohesion']['normalized_score'] = min_cohesion
|
44 |
+
|
45 |
+
# 2. Correlaci贸n vocabulario-cohesi贸n
|
46 |
+
# La cohesi贸n l茅xica depende del vocabulario
|
47 |
+
vocab_influence = scores['vocabulary']['normalized_score'] * 0.6
|
48 |
+
scores['cohesion']['normalized_score'] = max(
|
49 |
+
scores['cohesion']['normalized_score'],
|
50 |
+
vocab_influence
|
51 |
+
)
|
52 |
+
|
53 |
+
# 3. Correlaci贸n cohesi贸n-claridad
|
54 |
+
# La claridad no puede superar cohesi贸n * 1.2
|
55 |
+
max_clarity = scores['cohesion']['normalized_score'] * 1.2
|
56 |
+
if scores['clarity']['normalized_score'] > max_clarity:
|
57 |
+
scores['clarity']['normalized_score'] = max_clarity
|
58 |
+
|
59 |
+
# 4. Correlaci贸n estructura-claridad
|
60 |
+
# La claridad no puede superar estructura * 1.1
|
61 |
+
struct_max_clarity = scores['structure']['normalized_score'] * 1.1
|
62 |
+
scores['clarity']['normalized_score'] = min(
|
63 |
+
scores['clarity']['normalized_score'],
|
64 |
+
struct_max_clarity
|
65 |
+
)
|
66 |
+
|
67 |
+
# Normalizar todos los scores entre 0 y 1
|
68 |
+
for metric in scores:
|
69 |
+
scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score']))
|
70 |
+
|
71 |
+
return scores
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"Error en correlate_metrics: {str(e)}")
|
75 |
+
return scores
|
76 |
+
|
77 |
+
##########################################################################
|
78 |
+
|
79 |
def analyze_text_dimensions(doc):
|
80 |
"""
|
81 |
+
Analiza las dimensiones principales del texto manteniendo correlaciones l贸gicas.
|
82 |
"""
|
83 |
try:
|
84 |
+
# Obtener scores iniciales
|
85 |
vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
|
|
|
|
|
86 |
struct_score = analyze_structure(doc)
|
|
|
|
|
87 |
cohesion_score = analyze_cohesion(doc)
|
|
|
|
|
88 |
clarity_score, clarity_details = analyze_clarity(doc)
|
89 |
|
90 |
+
# Crear diccionario de scores inicial
|
91 |
+
scores = {
|
92 |
'vocabulary': {
|
93 |
'normalized_score': vocab_score,
|
94 |
'details': vocab_details
|
95 |
},
|
96 |
'structure': {
|
97 |
'normalized_score': struct_score,
|
98 |
+
'details': None
|
99 |
},
|
100 |
'cohesion': {
|
101 |
'normalized_score': cohesion_score,
|
102 |
+
'details': None
|
103 |
},
|
104 |
'clarity': {
|
105 |
'normalized_score': clarity_score,
|
|
|
107 |
}
|
108 |
}
|
109 |
|
110 |
+
# Ajustar correlaciones entre m茅tricas
|
111 |
+
adjusted_scores = correlate_metrics(scores)
|
112 |
+
|
113 |
+
# Logging para diagn贸stico
|
114 |
+
logger.info(f"""
|
115 |
+
Scores originales vs ajustados:
|
116 |
+
Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f}
|
117 |
+
Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f}
|
118 |
+
Cohesi贸n: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f}
|
119 |
+
Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f}
|
120 |
+
""")
|
121 |
+
|
122 |
+
return adjusted_scores
|
123 |
+
|
124 |
except Exception as e:
|
125 |
logger.error(f"Error en analyze_text_dimensions: {str(e)}")
|
126 |
return {
|
|
|
132 |
|
133 |
|
134 |
|
135 |
+
#############################################################################################
|
136 |
+
|
137 |
def analyze_clarity(doc):
|
138 |
"""
|
139 |
Analiza la claridad del texto considerando m煤ltiples factores.
|