Update modules/studentact/claude_recommendations.py
Browse files
modules/studentact/claude_recommendations.py
CHANGED
@@ -1,122 +1,259 @@
|
|
1 |
# modules/studentact/claude_recommendations.py
|
2 |
-
|
3 |
-
import anthropic
|
4 |
import os
|
|
|
5 |
import streamlit as st
|
6 |
import logging
|
7 |
-
|
8 |
import json
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
Args:
|
17 |
-
text: El texto original que se analiz贸
|
18 |
-
metrics: M茅tricas calculadas por el sistema
|
19 |
-
text_type: Tipo de texto (academic_article, student_essay, general_communication)
|
20 |
-
lang_code: C贸digo del idioma
|
21 |
-
|
22 |
-
Returns:
|
23 |
-
str: HTML formateado con recomendaciones personalizadas
|
24 |
-
"""
|
25 |
-
# Diccionario para traducci贸n de tipos de texto
|
26 |
-
text_type_names = {
|
27 |
'academic_article': 'art铆culo acad茅mico',
|
28 |
-
'
|
29 |
'general_communication': 'comunicaci贸n general'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
weak_areas = sorted(areas, key=lambda x: scores[x])
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
try:
|
38 |
api_key = os.environ.get("ANTHROPIC_API_KEY")
|
39 |
if not api_key:
|
40 |
-
logger.
|
41 |
-
return
|
42 |
-
|
43 |
-
client = anthropic.Anthropic(api_key=api_key)
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
Act煤a como un asistente experto en escritura acad茅mica y comunicaci贸n.
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
- Estructura: {scores['structure']:.2f}/1.00
|
57 |
-
- Cohesi贸n: {scores['cohesion']:.2f}/1.00
|
58 |
-
- Claridad: {scores['clarity']:.2f}/1.00
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
2. 3-4 recomendaciones espec铆ficas para mejorar el texto, identificando problemas concretos que has detectado
|
69 |
-
3. Un ejemplo concreto de c贸mo mejorar una frase del texto (si es posible)
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
"""
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
temperature=0.3,
|
80 |
-
system="Eres un asistente experto en an谩lisis textual que proporciona recomendaciones claras y 煤tiles para mejorar textos.",
|
81 |
-
messages=[
|
82 |
-
{"role": "user", "content": prompt}
|
83 |
-
]
|
84 |
-
)
|
85 |
-
|
86 |
-
# Obtener la respuesta
|
87 |
-
response = message.content[0].text
|
88 |
-
|
89 |
-
# Guardar en cach茅 para uso futuro
|
90 |
-
cache_key = f"claude_recommendations_{text_type}_{weak_areas[0]}"
|
91 |
-
st.session_state[cache_key] = response
|
92 |
-
|
93 |
-
return response
|
94 |
-
|
95 |
-
except Exception as api_error:
|
96 |
-
logger.error(f"Error en la llamada a la API de Claude: {str(api_error)}")
|
97 |
-
return fallback_recommendations(weak_areas)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
-
def
|
104 |
-
"""
|
105 |
-
|
106 |
-
'vocabulary': 'vocabulario',
|
107 |
-
'structure': 'estructura',
|
108 |
-
'cohesion': 'cohesi贸n',
|
109 |
-
'clarity': 'claridad'
|
110 |
-
}
|
111 |
-
|
112 |
-
return f"""
|
113 |
-
<h4>Recomendaciones para mejorar tu texto</h4>
|
114 |
-
<p>Hemos detectado que las 谩reas de <strong>{area_names.get(weak_areas[0], weak_areas[0])}</strong> y <strong>{area_names.get(weak_areas[1], weak_areas[1])}</strong>
|
115 |
-
son las que m谩s podr铆an beneficiarse de mejoras.</p>
|
116 |
-
<p>Para obtener recomendaciones m谩s detalladas, utiliza el asistente virtual de Claude AI
|
117 |
-
ubicado en la esquina superior izquierda (presiona la flecha junto al logo).</p>
|
118 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
|
121 |
"""
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# modules/studentact/claude_recommendations.py
|
|
|
|
|
2 |
import os
|
3 |
+
import anthropic
|
4 |
import streamlit as st
|
5 |
import logging
|
6 |
+
import time
|
7 |
import json
|
8 |
+
from datetime import datetime, timezone
|
9 |
+
|
10 |
+
# Local imports
|
11 |
+
from ..utils.widget_utils import generate_unique_key
|
12 |
+
from ..database.current_situation_mongo_db import store_current_situation_result
|
13 |
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
# Define text types
|
17 |
+
TEXT_TYPES = {
|
18 |
+
'es': {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
'academic_article': 'art铆culo acad茅mico',
|
20 |
+
'university_work': 'trabajo universitario',
|
21 |
'general_communication': 'comunicaci贸n general'
|
22 |
+
},
|
23 |
+
'en': {
|
24 |
+
'academic_article': 'academic article',
|
25 |
+
'university_work': 'university work',
|
26 |
+
'general_communication': 'general communication'
|
27 |
+
},
|
28 |
+
'fr': {
|
29 |
+
'academic_article': 'article acad茅mique',
|
30 |
+
'university_work': 'travail universitaire',
|
31 |
+
'general_communication': 'communication g茅n茅rale'
|
32 |
}
|
33 |
+
}
|
34 |
+
|
35 |
+
# Cache for recommendations to avoid redundant API calls
|
36 |
+
recommendation_cache = {}
|
37 |
+
|
38 |
+
def get_recommendation_cache_key(text, metrics, text_type, lang_code):
|
39 |
+
"""
|
40 |
+
Generate a cache key for recommendations.
|
41 |
+
"""
|
42 |
+
# Create a simple hash based on text content and metrics
|
43 |
+
text_hash = hash(text[:1000]) # Only use first 1000 chars for hashing
|
44 |
+
metrics_hash = hash(json.dumps(metrics, sort_keys=True))
|
45 |
+
return f"{text_hash}_{metrics_hash}_{text_type}_{lang_code}"
|
46 |
+
|
47 |
+
def format_metrics_for_claude(metrics, lang_code, text_type):
|
48 |
+
"""
|
49 |
+
Format metrics in a way that's readable for Claude
|
50 |
+
"""
|
51 |
+
formatted_metrics = {}
|
52 |
+
for key, value in metrics.items():
|
53 |
+
if isinstance(value, (int, float)):
|
54 |
+
formatted_metrics[key] = round(value, 2)
|
55 |
+
else:
|
56 |
+
formatted_metrics[key] = value
|
57 |
|
58 |
+
# Add context about what type of text this is
|
59 |
+
text_type_label = TEXT_TYPES.get(lang_code, {}).get(text_type, text_type)
|
60 |
+
formatted_metrics['text_type'] = text_type_label
|
|
|
61 |
|
62 |
+
return formatted_metrics
|
63 |
+
|
64 |
+
def generate_claude_recommendations(text, metrics, text_type, lang_code):
|
65 |
+
"""
|
66 |
+
Generate personalized recommendations using Claude API.
|
67 |
+
"""
|
68 |
try:
|
69 |
api_key = os.environ.get("ANTHROPIC_API_KEY")
|
70 |
if not api_key:
|
71 |
+
logger.error("Claude API key not found in environment variables")
|
72 |
+
return get_fallback_recommendations(lang_code)
|
|
|
|
|
73 |
|
74 |
+
# Check cache first
|
75 |
+
cache_key = get_recommendation_cache_key(text, metrics, text_type, lang_code)
|
76 |
+
if cache_key in recommendation_cache:
|
77 |
+
logger.info("Using cached recommendations")
|
78 |
+
return recommendation_cache[cache_key]
|
79 |
|
80 |
+
# Format metrics for Claude
|
81 |
+
formatted_metrics = format_metrics_for_claude(metrics, lang_code, text_type)
|
|
|
82 |
|
83 |
+
# Determine language for prompt
|
84 |
+
if lang_code == 'es':
|
85 |
+
system_prompt = """Eres un asistente especializado en an谩lisis de textos acad茅micos y comunicaci贸n escrita.
|
86 |
+
Tu tarea es analizar el texto del usuario y proporcionar recomendaciones personalizadas.
|
87 |
+
Usa un tono constructivo y espec铆fico. S茅 claro y directo con tus sugerencias.
|
88 |
+
"""
|
89 |
+
user_prompt = f"""Por favor, analiza este texto de tipo '{formatted_metrics['text_type']}'
|
90 |
+
y proporciona recomendaciones personalizadas para mejorarlo.
|
91 |
+
|
92 |
+
M脡TRICAS DE AN脕LISIS:
|
93 |
+
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
94 |
+
|
95 |
+
TEXTO A ANALIZAR:
|
96 |
+
{text[:2000]} # Limitamos el texto para evitar exceder tokens
|
97 |
+
|
98 |
+
Proporciona tu an谩lisis con el siguiente formato:
|
99 |
+
1. Un resumen breve (2-3 frases) del an谩lisis general
|
100 |
+
2. 3-4 recomendaciones espec铆ficas y accionables (cada una de 1-2 frases)
|
101 |
+
3. Un ejemplo concreto de mejora tomado del propio texto del usuario
|
102 |
+
4. Una sugerencia sobre qu茅 herramienta de AIdeaText usar (An谩lisis Morfosint谩ctico, An谩lisis Sem谩ntico o An谩lisis del Discurso)
|
103 |
+
|
104 |
+
Tu respuesta debe ser concisa y no exceder los 300 palabras."""
|
105 |
+
else:
|
106 |
+
# Default to English
|
107 |
+
system_prompt = """You are an assistant specialized in analyzing academic texts and written communication.
|
108 |
+
Your task is to analyze the user's text and provide personalized recommendations.
|
109 |
+
Use a constructive and specific tone. Be clear and direct with your suggestions.
|
110 |
+
"""
|
111 |
+
user_prompt = f"""Please analyze this text of type '{formatted_metrics['text_type']}'
|
112 |
+
and provide personalized recommendations to improve it.
|
113 |
+
|
114 |
+
ANALYSIS METRICS:
|
115 |
+
{json.dumps(formatted_metrics, indent=2, ensure_ascii=False)}
|
116 |
+
|
117 |
+
TEXT TO ANALYZE:
|
118 |
+
{text[:2000]} # Limiting text to avoid exceeding tokens
|
119 |
+
|
120 |
+
Provide your analysis with the following format:
|
121 |
+
1. A brief summary (2-3 sentences) of the general analysis
|
122 |
+
2. 3-4 specific and actionable recommendations (each 1-2 sentences)
|
123 |
+
3. A concrete example of improvement taken from the user's own text
|
124 |
+
4. A suggestion about which AIdeaText tool to use (Morphosyntactic Analysis, Semantic Analysis or Discourse Analysis)
|
125 |
+
|
126 |
+
Your response should be concise and not exceed 300 words."""
|
127 |
|
128 |
+
# Initialize Claude client
|
129 |
+
client = anthropic.Anthropic(api_key=api_key)
|
|
|
|
|
|
|
130 |
|
131 |
+
# Call Claude API
|
132 |
+
start_time = time.time()
|
133 |
+
response = client.messages.create(
|
134 |
+
model="claude-3-5-sonnet-20241022",
|
135 |
+
max_tokens=1024,
|
136 |
+
temperature=0.7,
|
137 |
+
system=system_prompt,
|
138 |
+
messages=[
|
139 |
+
{"role": "user", "content": user_prompt}
|
140 |
+
]
|
141 |
+
)
|
142 |
+
logger.info(f"Claude API call completed in {time.time() - start_time:.2f} seconds")
|
143 |
|
144 |
+
# Extract recommendations
|
145 |
+
recommendations = response.content[0].text
|
146 |
|
147 |
+
# Cache the result
|
148 |
+
recommendation_cache[cache_key] = recommendations
|
|
|
|
|
149 |
|
150 |
+
return recommendations
|
151 |
+
except Exception as e:
|
152 |
+
logger.error(f"Error generating recommendations with Claude: {str(e)}")
|
153 |
+
return get_fallback_recommendations(lang_code)
|
154 |
+
|
155 |
+
def get_fallback_recommendations(lang_code):
|
156 |
+
"""
|
157 |
+
Return fallback recommendations if Claude API fails
|
158 |
+
"""
|
159 |
+
if lang_code == 'es':
|
160 |
+
return """
|
161 |
+
**An谩lisis General**
|
162 |
+
Tu texto presenta una estructura b谩sica adecuada, pero hay 谩reas que pueden mejorarse para mayor claridad y cohesi贸n.
|
163 |
+
|
164 |
+
**Recomendaciones**:
|
165 |
+
- Intenta variar tu vocabulario para evitar repeticiones innecesarias
|
166 |
+
- Considera revisar la longitud de tus oraciones para mantener un mejor ritmo
|
167 |
+
- Aseg煤rate de establecer conexiones claras entre las ideas principales
|
168 |
+
- Revisa la consistencia en el uso de tiempos verbales
|
169 |
+
|
170 |
+
**Herramienta recomendada**:
|
171 |
+
Te sugerimos utilizar el An谩lisis Morfosint谩ctico para identificar patrones en tu estructura de oraciones.
|
172 |
"""
|
173 |
+
else:
|
174 |
+
return """
|
175 |
+
**General Analysis**
|
176 |
+
Your text presents an adequate basic structure, but there are areas that can be improved for better clarity and cohesion.
|
177 |
|
178 |
+
**Recommendations**:
|
179 |
+
- Try to vary your vocabulary to avoid unnecessary repetition
|
180 |
+
- Consider reviewing the length of your sentences to maintain a better rhythm
|
181 |
+
- Make sure to establish clear connections between main ideas
|
182 |
+
- Check consistency in the use of verb tenses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
**Recommended tool**:
|
185 |
+
We suggest using Morphosyntactic Analysis to identify patterns in your sentence structure.
|
186 |
+
"""
|
187 |
|
188 |
+
def store_recommendations(username, text, metrics, text_type, recommendations):
|
189 |
+
"""
|
190 |
+
Store the recommendations in the database
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
"""
|
192 |
+
try:
|
193 |
+
result_data = {
|
194 |
+
'username': username,
|
195 |
+
'timestamp': datetime.now(timezone.utc).isoformat(),
|
196 |
+
'text': text,
|
197 |
+
'metrics': metrics,
|
198 |
+
'text_type': text_type,
|
199 |
+
'recommendations': recommendations,
|
200 |
+
'analysis_type': 'current_situation_claude'
|
201 |
+
}
|
202 |
+
|
203 |
+
result = store_current_situation_result(result_data)
|
204 |
+
logger.info(f"Recommendations stored with ID: {result}")
|
205 |
+
return True
|
206 |
+
except Exception as e:
|
207 |
+
logger.error(f"Error storing recommendations: {str(e)}")
|
208 |
+
return False
|
209 |
|
210 |
def display_personalized_recommendations(text, metrics, text_type, lang_code, t):
|
211 |
"""
|
212 |
+
Display personalized recommendations based on text analysis
|
213 |
+
"""
|
214 |
+
try:
|
215 |
+
# Generate recommendations
|
216 |
+
recommendations = generate_claude_recommendations(text, metrics, text_type, lang_code)
|
217 |
+
|
218 |
+
# Format and display recommendations in a nice container
|
219 |
+
st.markdown("### 馃摑 " + t.get('recommendations_title', 'Personalized Recommendations'))
|
220 |
+
|
221 |
+
with st.container():
|
222 |
+
st.markdown(f"""
|
223 |
+
<div style="padding: 20px; border-radius: 10px;
|
224 |
+
background-color: #f8f9fa; margin-bottom: 20px;">
|
225 |
+
{recommendations}
|
226 |
+
</div>
|
227 |
+
""", unsafe_allow_html=True)
|
228 |
+
|
229 |
+
# Add prompt to use assistant
|
230 |
+
st.info("馃挕 **" + t.get('assistant_prompt', 'For further improvement:') + "** " +
|
231 |
+
t.get('assistant_message', 'Open the virtual assistant (powered by Claude AI) in the upper left corner by clicking the arrow next to the logo.'))
|
232 |
+
|
233 |
+
# Add save button
|
234 |
+
col1, col2, col3 = st.columns([1,1,1])
|
235 |
+
with col2:
|
236 |
+
if st.button(
|
237 |
+
t.get('save_button', 'Save Analysis'),
|
238 |
+
key=generate_unique_key("claude_recommendations", "save"),
|
239 |
+
type="primary",
|
240 |
+
use_container_width=True
|
241 |
+
):
|
242 |
+
if 'username' in st.session_state:
|
243 |
+
success = store_recommendations(
|
244 |
+
st.session_state.username,
|
245 |
+
text,
|
246 |
+
metrics,
|
247 |
+
text_type,
|
248 |
+
recommendations
|
249 |
+
)
|
250 |
+
if success:
|
251 |
+
st.success(t.get('save_success', 'Analysis saved successfully'))
|
252 |
+
else:
|
253 |
+
st.error(t.get('save_error', 'Error saving analysis'))
|
254 |
+
else:
|
255 |
+
st.error(t.get('login_required', 'Please log in to save analysis'))
|
256 |
+
|
257 |
+
except Exception as e:
|
258 |
+
logger.error(f"Error displaying recommendations: {str(e)}")
|
259 |
+
st.error(t.get('recommendations_error', 'Error generating recommendations. Please try again later.'))
|