Create semantic_analysis.py
Browse files
modules/text_analysis/semantic_analysis.py
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modules/text_analysis/semantic_analysis.py
|
2 |
+
# [Mantener todas las importaciones y constantes existentes...]
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
import spacy
|
6 |
+
import networkx as nx
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import io
|
9 |
+
import base64
|
10 |
+
from collections import Counter, defaultdict
|
11 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
13 |
+
import logging
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
# Define colors for grammatical categories
|
19 |
+
POS_COLORS = {
|
20 |
+
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD',
|
21 |
+
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90',
|
22 |
+
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA',
|
23 |
+
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9',
|
24 |
+
}
|
25 |
+
|
26 |
+
POS_TRANSLATIONS = {
|
27 |
+
'es': {
|
28 |
+
'ADJ': 'Adjetivo', 'ADP': 'Preposici贸n', 'ADV': 'Adverbio', 'AUX': 'Auxiliar',
|
29 |
+
'CCONJ': 'Conjunci贸n Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjecci贸n',
|
30 |
+
'NOUN': 'Sustantivo', 'NUM': 'N煤mero', 'PART': 'Part铆cula', 'PRON': 'Pronombre',
|
31 |
+
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunci贸n Subordinante', 'SYM': 'S铆mbolo',
|
32 |
+
'VERB': 'Verbo', 'X': 'Otro',
|
33 |
+
},
|
34 |
+
'en': {
|
35 |
+
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary',
|
36 |
+
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection',
|
37 |
+
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun',
|
38 |
+
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol',
|
39 |
+
'VERB': 'Verb', 'X': 'Other',
|
40 |
+
},
|
41 |
+
'fr': {
|
42 |
+
'ADJ': 'Adjectif', 'ADP': 'Pr茅position', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire',
|
43 |
+
'CCONJ': 'Conjonction de Coordination', 'DET': 'D茅terminant', 'INTJ': 'Interjection',
|
44 |
+
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom',
|
45 |
+
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole',
|
46 |
+
'VERB': 'Verbe', 'X': 'Autre',
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
50 |
+
ENTITY_LABELS = {
|
51 |
+
'es': {
|
52 |
+
"Personas": "lightblue",
|
53 |
+
"Lugares": "lightcoral",
|
54 |
+
"Inventos": "lightgreen",
|
55 |
+
"Fechas": "lightyellow",
|
56 |
+
"Conceptos": "lightpink"
|
57 |
+
},
|
58 |
+
'en': {
|
59 |
+
"People": "lightblue",
|
60 |
+
"Places": "lightcoral",
|
61 |
+
"Inventions": "lightgreen",
|
62 |
+
"Dates": "lightyellow",
|
63 |
+
"Concepts": "lightpink"
|
64 |
+
},
|
65 |
+
'fr': {
|
66 |
+
"Personnes": "lightblue",
|
67 |
+
"Lieux": "lightcoral",
|
68 |
+
"Inventions": "lightgreen",
|
69 |
+
"Dates": "lightyellow",
|
70 |
+
"Concepts": "lightpink"
|
71 |
+
}
|
72 |
+
}
|
73 |
+
|
74 |
+
CUSTOM_STOPWORDS = {
|
75 |
+
'es': {
|
76 |
+
# Art铆culos
|
77 |
+
'el', 'la', 'los', 'las', 'un', 'una', 'unos', 'unas',
|
78 |
+
# Preposiciones comunes
|
79 |
+
'a', 'ante', 'bajo', 'con', 'contra', 'de', 'desde', 'en',
|
80 |
+
'entre', 'hacia', 'hasta', 'para', 'por', 'seg煤n', 'sin',
|
81 |
+
'sobre', 'tras', 'durante', 'mediante',
|
82 |
+
# Conjunciones
|
83 |
+
'y', 'e', 'ni', 'o', 'u', 'pero', 'sino', 'porque',
|
84 |
+
# Pronombres
|
85 |
+
'yo', 't煤', '茅l', 'ella', 'nosotros', 'vosotros', 'ellos',
|
86 |
+
'ellas', 'este', 'esta', 'ese', 'esa', 'aquel', 'aquella',
|
87 |
+
# Verbos auxiliares comunes
|
88 |
+
'ser', 'estar', 'haber', 'tener',
|
89 |
+
# Palabras comunes en textos acad茅micos
|
90 |
+
'adem谩s', 'tambi茅n', 'asimismo', 'sin embargo', 'no obstante',
|
91 |
+
'por lo tanto', 'entonces', 'as铆', 'luego', 'pues',
|
92 |
+
# N煤meros escritos
|
93 |
+
'uno', 'dos', 'tres', 'primer', 'primera', 'segundo', 'segunda',
|
94 |
+
# Otras palabras comunes
|
95 |
+
'cada', 'todo', 'toda', 'todos', 'todas', 'otro', 'otra',
|
96 |
+
'donde', 'cuando', 'como', 'que', 'cual', 'quien',
|
97 |
+
'cuyo', 'cuya', 'hay', 'solo', 'ver', 'si', 'no',
|
98 |
+
# S铆mbolos y caracteres especiales
|
99 |
+
'#', '@', '/', '*', '+', '-', '=', '$', '%'
|
100 |
+
},
|
101 |
+
'en': {
|
102 |
+
# Articles
|
103 |
+
'the', 'a', 'an',
|
104 |
+
# Common prepositions
|
105 |
+
'in', 'on', 'at', 'by', 'for', 'with', 'about', 'against',
|
106 |
+
'between', 'into', 'through', 'during', 'before', 'after',
|
107 |
+
'above', 'below', 'to', 'from', 'up', 'down', 'of',
|
108 |
+
# Conjunctions
|
109 |
+
'and', 'or', 'but', 'nor', 'so', 'for', 'yet',
|
110 |
+
# Pronouns
|
111 |
+
'i', 'you', 'he', 'she', 'it', 'we', 'they', 'this',
|
112 |
+
'that', 'these', 'those', 'my', 'your', 'his', 'her',
|
113 |
+
# Auxiliary verbs
|
114 |
+
'be', 'am', 'is', 'are', 'was', 'were', 'been', 'have',
|
115 |
+
'has', 'had', 'do', 'does', 'did',
|
116 |
+
# Common academic words
|
117 |
+
'therefore', 'however', 'thus', 'hence', 'moreover',
|
118 |
+
'furthermore', 'nevertheless',
|
119 |
+
# Numbers written
|
120 |
+
'one', 'two', 'three', 'first', 'second', 'third',
|
121 |
+
# Other common words
|
122 |
+
'where', 'when', 'how', 'what', 'which', 'who',
|
123 |
+
'whom', 'whose', 'there', 'here', 'just', 'only',
|
124 |
+
# Symbols and special characters
|
125 |
+
'#', '@', '/', '*', '+', '-', '=', '$', '%'
|
126 |
+
},
|
127 |
+
'fr': {
|
128 |
+
# Articles
|
129 |
+
'le', 'la', 'les', 'un', 'une', 'des',
|
130 |
+
# Prepositions
|
131 |
+
'脿', 'de', 'dans', 'sur', 'en', 'par', 'pour', 'avec',
|
132 |
+
'sans', 'sous', 'entre', 'derri猫re', 'chez', 'avant',
|
133 |
+
# Conjunctions
|
134 |
+
'et', 'ou', 'mais', 'donc', 'car', 'ni', 'or',
|
135 |
+
# Pronouns
|
136 |
+
'je', 'tu', 'il', 'elle', 'nous', 'vous', 'ils',
|
137 |
+
'elles', 'ce', 'cette', 'ces', 'celui', 'celle',
|
138 |
+
# Auxiliary verbs
|
139 |
+
'锚tre', 'avoir', 'faire',
|
140 |
+
# Academic words
|
141 |
+
'donc', 'cependant', 'n茅anmoins', 'ainsi', 'toutefois',
|
142 |
+
'pourtant', 'alors',
|
143 |
+
# Numbers
|
144 |
+
'un', 'deux', 'trois', 'premier', 'premi猫re', 'second',
|
145 |
+
# Other common words
|
146 |
+
'o霉', 'quand', 'comment', 'que', 'qui', 'quoi',
|
147 |
+
'quel', 'quelle', 'plus', 'moins',
|
148 |
+
# Symbols
|
149 |
+
'#', '@', '/', '*', '+', '-', '=', '$', '%'
|
150 |
+
}
|
151 |
+
}
|
152 |
+
|
153 |
+
##############################################################################################################
|
154 |
+
def get_stopwords(lang_code):
|
155 |
+
"""
|
156 |
+
Obtiene el conjunto de stopwords para un idioma espec铆fico.
|
157 |
+
Combina las stopwords de spaCy con las personalizadas.
|
158 |
+
"""
|
159 |
+
try:
|
160 |
+
nlp = spacy.load(f'{lang_code}_core_news_sm')
|
161 |
+
spacy_stopwords = nlp.Defaults.stop_words
|
162 |
+
custom_stopwords = CUSTOM_STOPWORDS.get(lang_code, set())
|
163 |
+
return spacy_stopwords.union(custom_stopwords)
|
164 |
+
except:
|
165 |
+
return CUSTOM_STOPWORDS.get(lang_code, set())
|
166 |
+
|
167 |
+
|
168 |
+
def perform_semantic_analysis(text, nlp, lang_code):
|
169 |
+
"""
|
170 |
+
Realiza el an谩lisis sem谩ntico completo del texto.
|
171 |
+
Args:
|
172 |
+
text: Texto a analizar
|
173 |
+
nlp: Modelo de spaCy
|
174 |
+
lang_code: C贸digo del idioma
|
175 |
+
Returns:
|
176 |
+
dict: Resultados del an谩lisis
|
177 |
+
"""
|
178 |
+
|
179 |
+
logger.info(f"Starting semantic analysis for language: {lang_code}")
|
180 |
+
try:
|
181 |
+
doc = nlp(text)
|
182 |
+
key_concepts = identify_key_concepts(doc)
|
183 |
+
concept_graph = create_concept_graph(doc, key_concepts)
|
184 |
+
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
|
185 |
+
entities = extract_entities(doc, lang_code)
|
186 |
+
entity_graph = create_entity_graph(entities)
|
187 |
+
entity_graph_fig = visualize_entity_graph(entity_graph, lang_code)
|
188 |
+
|
189 |
+
# Convertir figuras a bytes
|
190 |
+
concept_graph_bytes = fig_to_bytes(concept_graph_fig)
|
191 |
+
entity_graph_bytes = fig_to_bytes(entity_graph_fig)
|
192 |
+
|
193 |
+
logger.info("Semantic analysis completed successfully")
|
194 |
+
return {
|
195 |
+
'key_concepts': key_concepts,
|
196 |
+
'concept_graph': concept_graph_bytes,
|
197 |
+
'entities': entities,
|
198 |
+
'entity_graph': entity_graph_bytes
|
199 |
+
}
|
200 |
+
except Exception as e:
|
201 |
+
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
|
202 |
+
raise
|
203 |
+
|
204 |
+
|
205 |
+
def fig_to_bytes(fig):
|
206 |
+
buf = io.BytesIO()
|
207 |
+
fig.savefig(buf, format='png')
|
208 |
+
buf.seek(0)
|
209 |
+
return buf.getvalue()
|
210 |
+
|
211 |
+
|
212 |
+
def fig_to_html(fig):
|
213 |
+
buf = io.BytesIO()
|
214 |
+
fig.savefig(buf, format='png')
|
215 |
+
buf.seek(0)
|
216 |
+
img_str = base64.b64encode(buf.getvalue()).decode()
|
217 |
+
return f'<img src="data:image/png;base64,{img_str}" />'
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
def identify_key_concepts(doc, min_freq=2, min_length=3):
|
222 |
+
"""
|
223 |
+
Identifica conceptos clave en el texto.
|
224 |
+
Args:
|
225 |
+
doc: Documento procesado por spaCy
|
226 |
+
min_freq: Frecuencia m铆nima para considerar un concepto
|
227 |
+
min_length: Longitud m铆nima de palabra para considerar
|
228 |
+
Returns:
|
229 |
+
list: Lista de tuplas (concepto, frecuencia)
|
230 |
+
"""
|
231 |
+
try:
|
232 |
+
# Obtener stopwords para el idioma
|
233 |
+
stopwords = get_stopwords(doc.lang_)
|
234 |
+
|
235 |
+
# Contar frecuencias de palabras
|
236 |
+
word_freq = Counter()
|
237 |
+
|
238 |
+
for token in doc:
|
239 |
+
if (token.lemma_.lower() not in stopwords and
|
240 |
+
len(token.lemma_) >= min_length and
|
241 |
+
token.is_alpha and
|
242 |
+
not token.is_punct and
|
243 |
+
not token.like_num):
|
244 |
+
|
245 |
+
word_freq[token.lemma_.lower()] += 1
|
246 |
+
|
247 |
+
# Filtrar por frecuencia m铆nima
|
248 |
+
concepts = [(word, freq) for word, freq in word_freq.items()
|
249 |
+
if freq >= min_freq]
|
250 |
+
|
251 |
+
# Ordenar por frecuencia
|
252 |
+
concepts.sort(key=lambda x: x[1], reverse=True)
|
253 |
+
|
254 |
+
return concepts[:10] # Retornar los 10 conceptos m谩s frecuentes
|
255 |
+
|
256 |
+
except Exception as e:
|
257 |
+
logger.error(f"Error en identify_key_concepts: {str(e)}")
|
258 |
+
return [] # Retornar lista vac铆a en caso de error
|
259 |
+
|
260 |
+
|
261 |
+
def create_concept_graph(doc, key_concepts):
|
262 |
+
"""
|
263 |
+
Crea un grafo de relaciones entre conceptos.
|
264 |
+
Args:
|
265 |
+
doc: Documento procesado por spaCy
|
266 |
+
key_concepts: Lista de tuplas (concepto, frecuencia)
|
267 |
+
Returns:
|
268 |
+
nx.Graph: Grafo de conceptos
|
269 |
+
"""
|
270 |
+
try:
|
271 |
+
G = nx.Graph()
|
272 |
+
|
273 |
+
# Crear un conjunto de conceptos clave para b煤squeda r谩pida
|
274 |
+
concept_words = {concept[0].lower() for concept in key_concepts}
|
275 |
+
|
276 |
+
# A帽adir nodos al grafo
|
277 |
+
for concept, freq in key_concepts:
|
278 |
+
G.add_node(concept.lower(), weight=freq)
|
279 |
+
|
280 |
+
# Analizar cada oraci贸n
|
281 |
+
for sent in doc.sents:
|
282 |
+
# Obtener conceptos en la oraci贸n actual
|
283 |
+
current_concepts = []
|
284 |
+
for token in sent:
|
285 |
+
if token.lemma_.lower() in concept_words:
|
286 |
+
current_concepts.append(token.lemma_.lower())
|
287 |
+
|
288 |
+
# Crear conexiones entre conceptos en la misma oraci贸n
|
289 |
+
for i, concept1 in enumerate(current_concepts):
|
290 |
+
for concept2 in current_concepts[i+1:]:
|
291 |
+
if concept1 != concept2:
|
292 |
+
# Si ya existe la arista, incrementar el peso
|
293 |
+
if G.has_edge(concept1, concept2):
|
294 |
+
G[concept1][concept2]['weight'] += 1
|
295 |
+
# Si no existe, crear nueva arista con peso 1
|
296 |
+
else:
|
297 |
+
G.add_edge(concept1, concept2, weight=1)
|
298 |
+
|
299 |
+
return G
|
300 |
+
|
301 |
+
except Exception as e:
|
302 |
+
logger.error(f"Error en create_concept_graph: {str(e)}")
|
303 |
+
# Retornar un grafo vac铆o en caso de error
|
304 |
+
return nx.Graph()
|
305 |
+
|
306 |
+
def visualize_concept_graph(G, lang_code):
|
307 |
+
"""
|
308 |
+
Visualiza el grafo de conceptos.
|
309 |
+
Args:
|
310 |
+
G: Grafo de networkx
|
311 |
+
lang_code: C贸digo del idioma
|
312 |
+
Returns:
|
313 |
+
matplotlib.figure.Figure: Figura con el grafo visualizado
|
314 |
+
"""
|
315 |
+
try:
|
316 |
+
plt.figure(figsize=(12, 8))
|
317 |
+
|
318 |
+
# Calcular el layout del grafo
|
319 |
+
pos = nx.spring_layout(G)
|
320 |
+
|
321 |
+
# Obtener pesos de nodos y aristas
|
322 |
+
node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()]
|
323 |
+
edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
|
324 |
+
|
325 |
+
# Dibujar el grafo
|
326 |
+
nx.draw_networkx_nodes(G, pos,
|
327 |
+
node_size=node_weights,
|
328 |
+
node_color='lightblue',
|
329 |
+
alpha=0.6)
|
330 |
+
|
331 |
+
nx.draw_networkx_edges(G, pos,
|
332 |
+
width=edge_weights,
|
333 |
+
alpha=0.5,
|
334 |
+
edge_color='gray')
|
335 |
+
|
336 |
+
nx.draw_networkx_labels(G, pos,
|
337 |
+
font_size=10,
|
338 |
+
font_weight='bold')
|
339 |
+
|
340 |
+
plt.title("Red de conceptos relacionados")
|
341 |
+
plt.axis('off')
|
342 |
+
|
343 |
+
return plt.gcf()
|
344 |
+
|
345 |
+
except Exception as e:
|
346 |
+
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
347 |
+
# Retornar una figura vac铆a en caso de error
|
348 |
+
return plt.figure()
|
349 |
+
|
350 |
+
def create_entity_graph(entities):
|
351 |
+
G = nx.Graph()
|
352 |
+
for entity_type, entity_list in entities.items():
|
353 |
+
for entity in entity_list:
|
354 |
+
G.add_node(entity, type=entity_type)
|
355 |
+
for i, entity1 in enumerate(entity_list):
|
356 |
+
for entity2 in entity_list[i+1:]:
|
357 |
+
G.add_edge(entity1, entity2)
|
358 |
+
return G
|
359 |
+
|
360 |
+
def visualize_entity_graph(G, lang_code):
|
361 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
362 |
+
pos = nx.spring_layout(G)
|
363 |
+
for entity_type, color in ENTITY_LABELS[lang_code].items():
|
364 |
+
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type]
|
365 |
+
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax)
|
366 |
+
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax)
|
367 |
+
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax)
|
368 |
+
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16)
|
369 |
+
ax.axis('off')
|
370 |
+
plt.tight_layout()
|
371 |
+
return fig
|
372 |
+
|
373 |
+
|
374 |
+
#################################################################################
|
375 |
+
def create_topic_graph(topics, doc):
|
376 |
+
G = nx.Graph()
|
377 |
+
for topic in topics:
|
378 |
+
G.add_node(topic, weight=doc.text.count(topic))
|
379 |
+
for i, topic1 in enumerate(topics):
|
380 |
+
for topic2 in topics[i+1:]:
|
381 |
+
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text)
|
382 |
+
if weight > 0:
|
383 |
+
G.add_edge(topic1, topic2, weight=weight)
|
384 |
+
return G
|
385 |
+
|
386 |
+
def visualize_topic_graph(G, lang_code):
|
387 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
388 |
+
pos = nx.spring_layout(G)
|
389 |
+
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()]
|
390 |
+
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax)
|
391 |
+
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax)
|
392 |
+
edge_weights = [G[u][v]['weight'] for u, v in G.edges()]
|
393 |
+
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax)
|
394 |
+
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16)
|
395 |
+
ax.axis('off')
|
396 |
+
plt.tight_layout()
|
397 |
+
return fig
|
398 |
+
|
399 |
+
###########################################################################################
|
400 |
+
def generate_summary(doc, lang_code):
|
401 |
+
sentences = list(doc.sents)
|
402 |
+
summary = sentences[:3] # Toma las primeras 3 oraciones como resumen
|
403 |
+
return " ".join([sent.text for sent in summary])
|
404 |
+
|
405 |
+
def extract_entities(doc, lang_code):
|
406 |
+
entities = defaultdict(list)
|
407 |
+
for ent in doc.ents:
|
408 |
+
if ent.label_ in ENTITY_LABELS[lang_code]:
|
409 |
+
entities[ent.label_].append(ent.text)
|
410 |
+
return dict(entities)
|
411 |
+
|
412 |
+
def analyze_sentiment(doc, lang_code):
|
413 |
+
positive_words = sum(1 for token in doc if token.sentiment > 0)
|
414 |
+
negative_words = sum(1 for token in doc if token.sentiment < 0)
|
415 |
+
total_words = len(doc)
|
416 |
+
if positive_words > negative_words:
|
417 |
+
return "Positivo"
|
418 |
+
elif negative_words > positive_words:
|
419 |
+
return "Negativo"
|
420 |
+
else:
|
421 |
+
return "Neutral"
|
422 |
+
|
423 |
+
def extract_topics(doc, lang_code):
|
424 |
+
vectorizer = TfidfVectorizer(stop_words='english', max_features=5)
|
425 |
+
tfidf_matrix = vectorizer.fit_transform([doc.text])
|
426 |
+
feature_names = vectorizer.get_feature_names_out()
|
427 |
+
return list(feature_names)
|
428 |
+
|
429 |
+
# Aseg煤rate de que todas las funciones necesarias est茅n exportadas
|
430 |
+
__all__ = [
|
431 |
+
'perform_semantic_analysis',
|
432 |
+
'identify_key_concepts',
|
433 |
+
'create_concept_graph',
|
434 |
+
'visualize_concept_graph',
|
435 |
+
'create_entity_graph',
|
436 |
+
'visualize_entity_graph',
|
437 |
+
'generate_summary',
|
438 |
+
'extract_entities',
|
439 |
+
'analyze_sentiment',
|
440 |
+
'create_topic_graph',
|
441 |
+
'visualize_topic_graph',
|
442 |
+
'extract_topics',
|
443 |
+
'ENTITY_LABELS',
|
444 |
+
'POS_COLORS',
|
445 |
+
'POS_TRANSLATIONS'
|
446 |
+
]
|