Update modules/text_analysis/semantic_analysis.py
Browse files
modules/text_analysis/semantic_analysis.py
CHANGED
@@ -256,46 +256,74 @@ def create_concept_graph(doc, key_concepts):
|
|
256 |
###############################################################################
|
257 |
def visualize_concept_graph(G, lang_code):
|
258 |
"""
|
259 |
-
Visualiza el grafo de conceptos con nodos
|
|
|
|
|
|
|
|
|
|
|
260 |
"""
|
261 |
try:
|
262 |
# Crear nueva figura con mayor tamaño
|
263 |
-
fig = plt.figure(figsize=(15, 10))
|
264 |
|
265 |
if not G.nodes():
|
266 |
logger.warning("Grafo vacío, retornando figura vacía")
|
267 |
return fig
|
268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
# Calcular layout con más espacio
|
270 |
-
pos = nx.spring_layout(
|
271 |
|
272 |
# Calcular factor de escala basado en número de nodos
|
273 |
-
num_nodes = len(
|
274 |
scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200
|
275 |
|
276 |
# Obtener pesos ajustados
|
277 |
-
node_weights = [
|
278 |
-
edge_weights = [
|
|
|
|
|
|
|
279 |
|
280 |
-
# Dibujar
|
281 |
-
nx.draw_networkx_nodes(
|
282 |
node_size=node_weights,
|
283 |
-
node_color=
|
284 |
-
alpha=0.
|
285 |
|
286 |
-
|
|
|
287 |
width=edge_weights,
|
288 |
-
alpha=0.
|
289 |
-
edge_color='gray'
|
|
|
|
|
|
|
|
|
290 |
|
291 |
# Ajustar tamaño de fuente según número de nodos
|
292 |
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
-
plt.title("Red de conceptos relacionados", pad=20)
|
299 |
plt.axis('off')
|
300 |
|
301 |
return fig
|
|
|
256 |
###############################################################################
|
257 |
def visualize_concept_graph(G, lang_code):
|
258 |
"""
|
259 |
+
Visualiza el grafo de conceptos con nodos coloreados y flechas direccionales.
|
260 |
+
Args:
|
261 |
+
G: networkx.Graph - Grafo de conceptos
|
262 |
+
lang_code: str - Código del idioma
|
263 |
+
Returns:
|
264 |
+
matplotlib.figure.Figure - Figura del grafo
|
265 |
"""
|
266 |
try:
|
267 |
# Crear nueva figura con mayor tamaño
|
268 |
+
fig = plt.figure(figsize=(15, 10))
|
269 |
|
270 |
if not G.nodes():
|
271 |
logger.warning("Grafo vacío, retornando figura vacía")
|
272 |
return fig
|
273 |
|
274 |
+
# Convertir grafo no dirigido a dirigido para mostrar flechas
|
275 |
+
DG = nx.DiGraph(G)
|
276 |
+
|
277 |
+
# Calcular centralidad de los nodos para el color
|
278 |
+
centrality = nx.degree_centrality(G)
|
279 |
+
|
280 |
# Calcular layout con más espacio
|
281 |
+
pos = nx.spring_layout(DG, k=2, iterations=50)
|
282 |
|
283 |
# Calcular factor de escala basado en número de nodos
|
284 |
+
num_nodes = len(DG.nodes())
|
285 |
scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200
|
286 |
|
287 |
# Obtener pesos ajustados
|
288 |
+
node_weights = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()]
|
289 |
+
edge_weights = [DG[u][v].get('weight', 1) for u, v in DG.edges()]
|
290 |
+
|
291 |
+
# Crear mapa de colores basado en centralidad
|
292 |
+
node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()]
|
293 |
|
294 |
+
# Dibujar nodos
|
295 |
+
nx.draw_networkx_nodes(DG, pos,
|
296 |
node_size=node_weights,
|
297 |
+
node_color=node_colors,
|
298 |
+
alpha=0.7)
|
299 |
|
300 |
+
# Dibujar aristas con flechas
|
301 |
+
nx.draw_networkx_edges(DG, pos,
|
302 |
width=edge_weights,
|
303 |
+
alpha=0.6,
|
304 |
+
edge_color='gray',
|
305 |
+
arrows=True, # Activar flechas
|
306 |
+
arrowsize=20, # Tamaño de las flechas
|
307 |
+
arrowstyle='->', # Estilo de las flechas
|
308 |
+
connectionstyle='arc3,rad=0.2') # Curvar las líneas para mejor visualización
|
309 |
|
310 |
# Ajustar tamaño de fuente según número de nodos
|
311 |
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
|
312 |
|
313 |
+
# Dibujar etiquetas con fondo blanco para mejor legibilidad
|
314 |
+
labels = nx.draw_networkx_labels(DG, pos,
|
315 |
+
font_size=font_size,
|
316 |
+
font_weight='bold',
|
317 |
+
bbox=dict(facecolor='white',
|
318 |
+
edgecolor='none',
|
319 |
+
alpha=0.7))
|
320 |
+
|
321 |
+
# Añadir leyenda de centralidad
|
322 |
+
sm = plt.cm.ScalarMappable(cmap=plt.cm.viridis)
|
323 |
+
sm.set_array([])
|
324 |
+
plt.colorbar(sm, label='Centralidad del concepto')
|
325 |
|
326 |
+
plt.title("Red de conceptos relacionados", pad=20, fontsize=14)
|
327 |
plt.axis('off')
|
328 |
|
329 |
return fig
|