Spaces:
Sleeping
Sleeping
Update modules/morphosyntax/morphosyntax_interface.py
Browse files
modules/morphosyntax/morphosyntax_interface.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
#modules/morphosyntax/morphosyntax_interface.py
|
| 2 |
import streamlit as st
|
| 3 |
from streamlit_float import *
|
| 4 |
from streamlit_antd_components import *
|
|
@@ -10,297 +9,163 @@ import pandas as pd
|
|
| 10 |
import base64
|
| 11 |
import re
|
| 12 |
|
| 13 |
-
# Importar desde morphosyntax_process.py
|
| 14 |
from .morphosyntax_process import (
|
| 15 |
process_morphosyntactic_input,
|
| 16 |
format_analysis_results,
|
| 17 |
-
perform_advanced_morphosyntactic_analysis,
|
| 18 |
-
get_repeated_words_colors,
|
| 19 |
highlight_repeated_words,
|
| 20 |
POS_COLORS,
|
| 21 |
POS_TRANSLATIONS
|
| 22 |
)
|
| 23 |
|
| 24 |
from ..utils.widget_utils import generate_unique_key
|
| 25 |
-
|
| 26 |
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result
|
| 27 |
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
| 28 |
|
| 29 |
-
# from ..database.morphosintaxis_export import export_user_interactions
|
| 30 |
-
|
| 31 |
import logging
|
| 32 |
logger = logging.getLogger(__name__)
|
| 33 |
|
| 34 |
-
############################################################################################################
|
| 35 |
def display_morphosyntax_interface(lang_code, nlp_models, morpho_t):
|
| 36 |
try:
|
| 37 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
if 'morphosyntax_state' not in st.session_state:
|
| 39 |
st.session_state.morphosyntax_state = {
|
| 40 |
'input_text': "",
|
| 41 |
'analysis_count': 0,
|
| 42 |
-
'last_analysis': None
|
|
|
|
| 43 |
}
|
| 44 |
|
| 45 |
-
# 2.
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
# 3. Actualizar el estado con el texto actual
|
| 56 |
-
st.session_state.morphosyntax_state['input_text'] = sentence_input
|
| 57 |
-
|
| 58 |
-
# 4. Crear columnas para el botón
|
| 59 |
-
col1, col2, col3 = st.columns([2,1,2])
|
| 60 |
-
|
| 61 |
-
# 5. Botón de análisis en la columna central
|
| 62 |
-
with col1:
|
| 63 |
-
analyze_button = st.button(
|
| 64 |
-
morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'),
|
| 65 |
-
key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}",
|
| 66 |
-
type="primary", # Nuevo en Streamlit 1.39.0
|
| 67 |
-
icon="🔍", # Nuevo en Streamlit 1.39.0
|
| 68 |
-
disabled=not bool(sentence_input.strip()), # Se activa solo cuando hay texto
|
| 69 |
-
use_container_width=True
|
| 70 |
)
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
st.session_state.morphosyntax_state['analysis_count'] += 1
|
| 93 |
-
|
| 94 |
-
# Guardar el análisis en la base de datos
|
| 95 |
-
if store_student_morphosyntax_result(
|
| 96 |
-
username=st.session_state.username,
|
| 97 |
-
text=sentence_input,
|
| 98 |
-
arc_diagrams=advanced_analysis['arc_diagrams']
|
| 99 |
-
):
|
| 100 |
-
st.success(morpho_t.get('success_message', 'Analysis saved successfully'))
|
| 101 |
-
|
| 102 |
-
# Mostrar resultados
|
| 103 |
-
display_morphosyntax_results(
|
| 104 |
-
st.session_state.morphosyntax_result,
|
| 105 |
-
lang_code,
|
| 106 |
-
morpho_t
|
| 107 |
)
|
| 108 |
-
|
| 109 |
-
st.
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
except Exception as e:
|
| 126 |
logger.error(f"Error general en display_morphosyntax_interface: {str(e)}")
|
| 127 |
st.error("Se produjo un error. Por favor, intente de nuevo.")
|
| 128 |
-
st.error(f"Detalles del error: {str(e)}") # Añadido para mejor debugging
|
| 129 |
|
| 130 |
-
############################################################################################################
|
| 131 |
def display_morphosyntax_results(result, lang_code, morpho_t):
|
| 132 |
-
"""
|
| 133 |
-
Muestra los resultados del análisis morfosintáctico.
|
| 134 |
-
Args:
|
| 135 |
-
result: Resultado del análisis
|
| 136 |
-
lang_code: Código del idioma
|
| 137 |
-
t: Diccionario de traducciones
|
| 138 |
-
"""
|
| 139 |
-
# Obtener el diccionario de traducciones morfosintácticas
|
| 140 |
-
# morpho_t = t.get('MORPHOSYNTACTIC', {})
|
| 141 |
-
|
| 142 |
if result is None:
|
| 143 |
st.warning(morpho_t.get('no_results', 'No results available'))
|
| 144 |
return
|
| 145 |
|
| 146 |
doc = result['doc']
|
| 147 |
advanced_analysis = result['advanced_analysis']
|
| 148 |
-
|
| 149 |
-
# Mostrar leyenda
|
| 150 |
-
st.markdown(f"##### {morpho_t.get('legend', 'Legend: Grammatical categories')}")
|
| 151 |
-
legend_html = "<div style='display: flex; flex-wrap: wrap;'>"
|
| 152 |
-
for pos, color in POS_COLORS.items():
|
| 153 |
-
if pos in POS_TRANSLATIONS[lang_code]:
|
| 154 |
-
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>"
|
| 155 |
-
legend_html += "</div>"
|
| 156 |
-
st.markdown(legend_html, unsafe_allow_html=True)
|
| 157 |
|
| 158 |
-
#
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
with st.expander(morpho_t.get('repeated_words', 'Repeated words'), expanded=True):
|
|
|
|
| 161 |
highlighted_text = highlight_repeated_words(doc, word_colors)
|
| 162 |
st.markdown(highlighted_text, unsafe_allow_html=True)
|
| 163 |
-
|
| 164 |
-
# Mostrar estructura de oraciones
|
| 165 |
-
with st.expander(morpho_t.get('sentence_structure', 'Sentence structure'), expanded=True):
|
| 166 |
-
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']):
|
| 167 |
-
sentence_str = (
|
| 168 |
-
f"**{morpho_t.get('sentence', 'Sentence')} {i+1}** " # Aquí está el cambio
|
| 169 |
-
f"{morpho_t.get('root', 'Root')}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " # Y aquí
|
| 170 |
-
f"{morpho_t.get('subjects', 'Subjects')}: {', '.join(sent_analysis['subjects'])} -- " # Y aquí
|
| 171 |
-
f"{morpho_t.get('objects', 'Objects')}: {', '.join(sent_analysis['objects'])} -- " # Y aquí
|
| 172 |
-
f"{morpho_t.get('verbs', 'Verbs')}: {', '.join(sent_analysis['verbs'])}" # Y aquí
|
| 173 |
-
)
|
| 174 |
-
st.markdown(sentence_str)
|
| 175 |
|
| 176 |
-
#
|
| 177 |
-
col1, col2 = st.columns(2)
|
| 178 |
-
|
| 179 |
-
with col1:
|
| 180 |
-
with st.expander(morpho_t.get('pos_analysis', 'Part of speech'), expanded=True):
|
| 181 |
-
pos_df = pd.DataFrame(advanced_analysis['pos_analysis'])
|
| 182 |
-
|
| 183 |
-
# Traducir las etiquetas POS a sus nombres en el idioma seleccionado
|
| 184 |
-
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
|
| 185 |
-
|
| 186 |
-
# Renombrar las columnas para mayor claridad
|
| 187 |
-
pos_df = pos_df.rename(columns={
|
| 188 |
-
'pos': morpho_t.get('grammatical_category', 'Grammatical category'),
|
| 189 |
-
'count': morpho_t.get('count', 'Count'),
|
| 190 |
-
'percentage': morpho_t.get('percentage', 'Percentage'),
|
| 191 |
-
'examples': morpho_t.get('examples', 'Examples')
|
| 192 |
-
})
|
| 193 |
-
|
| 194 |
-
# Mostrar el dataframe
|
| 195 |
-
st.dataframe(pos_df)
|
| 196 |
-
|
| 197 |
-
with col2:
|
| 198 |
-
with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True):
|
| 199 |
-
# 1. Crear el DataFrame inicial
|
| 200 |
-
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis'])
|
| 201 |
-
|
| 202 |
-
# 2. Primero renombrar las columnas usando las traducciones de la interfaz
|
| 203 |
-
column_mapping = {
|
| 204 |
-
'text': morpho_t.get('word', 'Word'),
|
| 205 |
-
'lemma': morpho_t.get('lemma', 'Lemma'),
|
| 206 |
-
'pos': morpho_t.get('grammatical_category', 'Grammatical category'),
|
| 207 |
-
'dep': morpho_t.get('dependency', 'Dependency'),
|
| 208 |
-
'morph': morpho_t.get('morphology', 'Morphology')
|
| 209 |
-
}
|
| 210 |
-
|
| 211 |
-
# 3. Aplicar el renombrado
|
| 212 |
-
morph_df = morph_df.rename(columns=column_mapping)
|
| 213 |
-
|
| 214 |
-
# 4. Traducir las categorías gramaticales usando POS_TRANSLATIONS global
|
| 215 |
-
grammatical_category = morpho_t.get('grammatical_category', 'Grammatical category')
|
| 216 |
-
morph_df[grammatical_category] = morph_df[grammatical_category].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
|
| 217 |
-
|
| 218 |
-
# 2.2 Traducir dependencias usando traducciones específicas
|
| 219 |
-
dep_translations = {
|
| 220 |
-
|
| 221 |
-
'es': {
|
| 222 |
-
'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto',
|
| 223 |
-
'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto',
|
| 224 |
-
'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado',
|
| 225 |
-
'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso',
|
| 226 |
-
'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal',
|
| 227 |
-
'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva',
|
| 228 |
-
'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador',
|
| 229 |
-
'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo',
|
| 230 |
-
'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis',
|
| 231 |
-
'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación'
|
| 232 |
-
},
|
| 233 |
-
|
| 234 |
-
'en': {
|
| 235 |
-
'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object',
|
| 236 |
-
'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement',
|
| 237 |
-
'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier',
|
| 238 |
-
'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker',
|
| 239 |
-
'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun',
|
| 240 |
-
'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking',
|
| 241 |
-
'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression',
|
| 242 |
-
'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan',
|
| 243 |
-
'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation'
|
| 244 |
-
},
|
| 245 |
-
|
| 246 |
-
'fr': {
|
| 247 |
-
'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect',
|
| 248 |
-
'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique',
|
| 249 |
-
'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial',
|
| 250 |
-
'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal',
|
| 251 |
-
'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant',
|
| 252 |
-
'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée',
|
| 253 |
-
'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin',
|
| 254 |
-
'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation'
|
| 255 |
-
}
|
| 256 |
-
}
|
| 257 |
-
|
| 258 |
-
dependency = morpho_t.get('dependency', 'Dependency')
|
| 259 |
-
morph_df[dependency] = morph_df[dependency].map(lambda x: dep_translations[lang_code].get(x, x))
|
| 260 |
-
|
| 261 |
-
morph_translations = {
|
| 262 |
-
'es': {
|
| 263 |
-
'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido',
|
| 264 |
-
'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo',
|
| 265 |
-
'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz',
|
| 266 |
-
'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural',
|
| 267 |
-
'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo',
|
| 268 |
-
'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado',
|
| 269 |
-
'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto'
|
| 270 |
-
},
|
| 271 |
-
|
| 272 |
-
'en': {
|
| 273 |
-
'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person',
|
| 274 |
-
'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice',
|
| 275 |
-
'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative',
|
| 276 |
-
'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle',
|
| 277 |
-
'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect'
|
| 278 |
-
},
|
| 279 |
-
|
| 280 |
-
'fr': {
|
| 281 |
-
'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom',
|
| 282 |
-
'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix',
|
| 283 |
-
'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif',
|
| 284 |
-
'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe',
|
| 285 |
-
'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait'
|
| 286 |
-
}
|
| 287 |
-
}
|
| 288 |
-
|
| 289 |
-
def translate_morph(morph_string, lang_code):
|
| 290 |
-
for key, value in morph_translations[lang_code].items():
|
| 291 |
-
morph_string = morph_string.replace(key, value)
|
| 292 |
-
return morph_string
|
| 293 |
-
|
| 294 |
-
morphology = morpho_t.get('morphology', 'Morphology')
|
| 295 |
-
morph_df[morphology] = morph_df[morphology].apply(lambda x: translate_morph(x, lang_code))
|
| 296 |
-
|
| 297 |
-
st.dataframe(morph_df)
|
| 298 |
-
|
| 299 |
-
# Mostrar diagramas de arco
|
| 300 |
with st.expander(morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram'), expanded=True):
|
| 301 |
sentences = list(doc.sents)
|
| 302 |
-
arc_diagrams = []
|
| 303 |
-
|
| 304 |
for i, sent in enumerate(sentences):
|
| 305 |
st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}")
|
| 306 |
html = displacy.render(sent, style="dep", options={"distance": 100})
|
|
@@ -309,14 +174,63 @@ def display_morphosyntax_results(result, lang_code, morpho_t):
|
|
| 309 |
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"',
|
| 310 |
lambda m: f'<g transform="translate({m.group(1)},50)"', html)
|
| 311 |
st.write(html, unsafe_allow_html=True)
|
| 312 |
-
arc_diagrams.append(html)
|
| 313 |
|
| 314 |
-
#
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from streamlit_float import *
|
| 3 |
from streamlit_antd_components import *
|
|
|
|
| 9 |
import base64
|
| 10 |
import re
|
| 11 |
|
|
|
|
| 12 |
from .morphosyntax_process import (
|
| 13 |
process_morphosyntactic_input,
|
| 14 |
format_analysis_results,
|
| 15 |
+
perform_advanced_morphosyntactic_analysis,
|
| 16 |
+
get_repeated_words_colors,
|
| 17 |
highlight_repeated_words,
|
| 18 |
POS_COLORS,
|
| 19 |
POS_TRANSLATIONS
|
| 20 |
)
|
| 21 |
|
| 22 |
from ..utils.widget_utils import generate_unique_key
|
|
|
|
| 23 |
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result
|
| 24 |
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
| 25 |
|
|
|
|
|
|
|
| 26 |
import logging
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
|
|
|
| 29 |
def display_morphosyntax_interface(lang_code, nlp_models, morpho_t):
|
| 30 |
try:
|
| 31 |
+
# CSS para mejorar la estabilidad y prevenir saltos
|
| 32 |
+
st.markdown("""
|
| 33 |
+
<style>
|
| 34 |
+
.stTextArea textarea {
|
| 35 |
+
font-size: 1rem;
|
| 36 |
+
line-height: 1.5;
|
| 37 |
+
resize: vertical;
|
| 38 |
+
}
|
| 39 |
+
.block-container {
|
| 40 |
+
padding-top: 1rem;
|
| 41 |
+
padding-bottom: 1rem;
|
| 42 |
+
}
|
| 43 |
+
.stExpander {
|
| 44 |
+
border: none;
|
| 45 |
+
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
| 46 |
+
margin-bottom: 1rem;
|
| 47 |
+
}
|
| 48 |
+
.legend-container {
|
| 49 |
+
position: sticky;
|
| 50 |
+
top: 0;
|
| 51 |
+
background: white;
|
| 52 |
+
z-index: 100;
|
| 53 |
+
padding: 0.5rem 0;
|
| 54 |
+
border-bottom: 1px solid #eee;
|
| 55 |
+
}
|
| 56 |
+
</style>
|
| 57 |
+
""", unsafe_allow_html=True)
|
| 58 |
+
|
| 59 |
+
# 1. Inicializar el estado
|
| 60 |
if 'morphosyntax_state' not in st.session_state:
|
| 61 |
st.session_state.morphosyntax_state = {
|
| 62 |
'input_text': "",
|
| 63 |
'analysis_count': 0,
|
| 64 |
+
'last_analysis': None,
|
| 65 |
+
'current_tab': 0
|
| 66 |
}
|
| 67 |
|
| 68 |
+
# 2. Contenedor principal con diseño sticky
|
| 69 |
+
with st.container():
|
| 70 |
+
# Campo de entrada de texto
|
| 71 |
+
input_key = f"morpho_input_{st.session_state.morphosyntax_state['analysis_count']}"
|
| 72 |
+
sentence_input = st.text_area(
|
| 73 |
+
morpho_t.get('morpho_input_label', 'Enter text to analyze'),
|
| 74 |
+
height=150,
|
| 75 |
+
placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'),
|
| 76 |
+
key=input_key,
|
| 77 |
+
on_change=lambda: None # Previene recargas innecesarias
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
+
# 3. Botón de análisis centrado
|
| 81 |
+
col1, col2, col3 = st.columns([2,1,2])
|
| 82 |
+
with col1:
|
| 83 |
+
analyze_button = st.button(
|
| 84 |
+
morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'),
|
| 85 |
+
key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}",
|
| 86 |
+
type="primary",
|
| 87 |
+
icon="🔍",
|
| 88 |
+
disabled=not bool(sentence_input.strip()),
|
| 89 |
+
use_container_width=True
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# 4. Procesar análisis
|
| 93 |
+
if analyze_button and sentence_input.strip():
|
| 94 |
+
try:
|
| 95 |
+
with st.spinner(morpho_t.get('processing', 'Processing...')):
|
| 96 |
+
doc = nlp_models[lang_code](sentence_input)
|
| 97 |
+
advanced_analysis = perform_advanced_morphosyntactic_analysis(
|
| 98 |
+
sentence_input,
|
| 99 |
+
nlp_models[lang_code]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
+
|
| 102 |
+
st.session_state.morphosyntax_result = {
|
| 103 |
+
'doc': doc,
|
| 104 |
+
'advanced_analysis': advanced_analysis
|
| 105 |
+
}
|
| 106 |
+
st.session_state.morphosyntax_state['analysis_count'] += 1
|
| 107 |
+
|
| 108 |
+
# Guardar resultado
|
| 109 |
+
if store_student_morphosyntax_result(
|
| 110 |
+
username=st.session_state.username,
|
| 111 |
+
text=sentence_input,
|
| 112 |
+
arc_diagrams=advanced_analysis['arc_diagrams']
|
| 113 |
+
):
|
| 114 |
+
st.success(morpho_t.get('success_message', 'Analysis saved successfully'))
|
| 115 |
+
st.session_state.morphosyntax_state['current_tab'] = 0
|
| 116 |
+
display_morphosyntax_results(
|
| 117 |
+
st.session_state.morphosyntax_result,
|
| 118 |
+
lang_code,
|
| 119 |
+
morpho_t
|
| 120 |
+
)
|
| 121 |
+
else:
|
| 122 |
+
st.error(morpho_t.get('error_message', 'Error saving analysis'))
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
logger.error(f"Error en análisis morfosintáctico: {str(e)}")
|
| 126 |
+
st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}'))
|
| 127 |
+
|
| 128 |
+
# 5. Mostrar resultados previos
|
| 129 |
+
elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result:
|
| 130 |
+
display_morphosyntax_results(
|
| 131 |
+
st.session_state.morphosyntax_result,
|
| 132 |
+
lang_code,
|
| 133 |
+
morpho_t
|
| 134 |
+
)
|
| 135 |
+
elif not sentence_input.strip():
|
| 136 |
+
st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis'))
|
| 137 |
+
|
| 138 |
except Exception as e:
|
| 139 |
logger.error(f"Error general en display_morphosyntax_interface: {str(e)}")
|
| 140 |
st.error("Se produjo un error. Por favor, intente de nuevo.")
|
|
|
|
| 141 |
|
|
|
|
| 142 |
def display_morphosyntax_results(result, lang_code, morpho_t):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
if result is None:
|
| 144 |
st.warning(morpho_t.get('no_results', 'No results available'))
|
| 145 |
return
|
| 146 |
|
| 147 |
doc = result['doc']
|
| 148 |
advanced_analysis = result['advanced_analysis']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
# Leyenda fija en la parte superior
|
| 151 |
+
with st.container():
|
| 152 |
+
st.markdown(f"##### {morpho_t.get('legend', 'Legend: Grammatical categories')}")
|
| 153 |
+
legend_html = "<div class='legend-container'><div style='display: flex; flex-wrap: wrap;'>"
|
| 154 |
+
for pos, color in POS_COLORS.items():
|
| 155 |
+
if pos in POS_TRANSLATIONS[lang_code]:
|
| 156 |
+
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>"
|
| 157 |
+
legend_html += "</div></div>"
|
| 158 |
+
st.markdown(legend_html, unsafe_allow_html=True)
|
| 159 |
+
|
| 160 |
+
# Palabras repetidas
|
| 161 |
with st.expander(morpho_t.get('repeated_words', 'Repeated words'), expanded=True):
|
| 162 |
+
word_colors = get_repeated_words_colors(doc)
|
| 163 |
highlighted_text = highlight_repeated_words(doc, word_colors)
|
| 164 |
st.markdown(highlighted_text, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
# Análisis sintáctico (diagramas de arco)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
with st.expander(morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram'), expanded=True):
|
| 168 |
sentences = list(doc.sents)
|
|
|
|
|
|
|
| 169 |
for i, sent in enumerate(sentences):
|
| 170 |
st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}")
|
| 171 |
html = displacy.render(sent, style="dep", options={"distance": 100})
|
|
|
|
| 174 |
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"',
|
| 175 |
lambda m: f'<g transform="translate({m.group(1)},50)"', html)
|
| 176 |
st.write(html, unsafe_allow_html=True)
|
|
|
|
| 177 |
|
| 178 |
+
# Estructura de oraciones
|
| 179 |
+
with st.expander(morpho_t.get('sentence_structure', 'Sentence structure'), expanded=True):
|
| 180 |
+
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']):
|
| 181 |
+
sentence_str = (
|
| 182 |
+
f"**{morpho_t.get('sentence', 'Sentence')} {i+1}** "
|
| 183 |
+
f"{morpho_t.get('root', 'Root')}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- "
|
| 184 |
+
f"{morpho_t.get('subjects', 'Subjects')}: {', '.join(sent_analysis['subjects'])} -- "
|
| 185 |
+
f"{morpho_t.get('objects', 'Objects')}: {', '.join(sent_analysis['objects'])} -- "
|
| 186 |
+
f"{morpho_t.get('verbs', 'Verbs')}: {', '.join(sent_analysis['verbs'])}"
|
| 187 |
+
)
|
| 188 |
+
st.markdown(sentence_str)
|
| 189 |
+
|
| 190 |
+
# Análisis de categorías gramaticales
|
| 191 |
+
with st.expander(morpho_t.get('pos_analysis', 'Part of speech'), expanded=True):
|
| 192 |
+
pos_df = pd.DataFrame(advanced_analysis['pos_analysis'])
|
| 193 |
+
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
|
| 194 |
+
pos_df = pos_df.rename(columns={
|
| 195 |
+
'pos': morpho_t.get('grammatical_category', 'Grammatical category'),
|
| 196 |
+
'count': morpho_t.get('count', 'Count'),
|
| 197 |
+
'percentage': morpho_t.get('percentage', 'Percentage'),
|
| 198 |
+
'examples': morpho_t.get('examples', 'Examples')
|
| 199 |
+
})
|
| 200 |
+
st.dataframe(pos_df, use_container_width=True)
|
| 201 |
+
|
| 202 |
+
# Análisis morfológico
|
| 203 |
+
with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True):
|
| 204 |
+
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis'])
|
| 205 |
+
column_mapping = {
|
| 206 |
+
'text': morpho_t.get('word', 'Word'),
|
| 207 |
+
'lemma': morpho_t.get('lemma', 'Lemma'),
|
| 208 |
+
'pos': morpho_t.get('grammatical_category', 'Grammatical category'),
|
| 209 |
+
'dep': morpho_t.get('dependency', 'Dependency'),
|
| 210 |
+
'morph': morpho_t.get('morphology', 'Morphology')
|
| 211 |
+
}
|
| 212 |
+
morph_df = morph_df.rename(columns=column_mapping)
|
| 213 |
+
|
| 214 |
+
# Traducir categorías gramaticales
|
| 215 |
+
grammatical_category = morpho_t.get('grammatical_category', 'Grammatical category')
|
| 216 |
+
morph_df[grammatical_category] = morph_df[grammatical_category].map(
|
| 217 |
+
lambda x: POS_TRANSLATIONS[lang_code].get(x, x)
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# Aplicar traducciones de dependencias y morfología
|
| 221 |
+
dependency = morpho_t.get('dependency', 'Dependency')
|
| 222 |
+
morphology = morpho_t.get('morphology', 'Morphology')
|
| 223 |
+
|
| 224 |
+
def translate_morph(morph_string, lang_code):
|
| 225 |
+
for key, value in morph_translations[lang_code].items():
|
| 226 |
+
morph_string = morph_string.replace(key, value)
|
| 227 |
+
return morph_string
|
| 228 |
+
|
| 229 |
+
morph_df[dependency] = morph_df[dependency].map(
|
| 230 |
+
lambda x: dep_translations[lang_code].get(x, x)
|
| 231 |
+
)
|
| 232 |
+
morph_df[morphology] = morph_df[morphology].apply(
|
| 233 |
+
lambda x: translate_morph(x, lang_code)
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
st.dataframe(morph_df, use_container_width=True)
|