}, 'feedback_name_es': '', 'role': 'role', 'discourse_sebastian.marroquin@aideatext.ai_sebastian.marroquin@aideatext.ai': None, 'username': 'sebastian.marroquin@aideatext.ai', 'current_file_contents': 'Uso de stanza en el análisis sintáctico en la enseñanza de la redacción. \r\n\r\nStanza es una biblioteca de procesamiento del lenguaje natural (NLP) desarrollada por Stanford NLP Group, que ofrece una serie de herramientas de análisis lingüístico para muchos idiomas. Sus capacidades se extienden desde la segmentación de texto hasta análisis más complejos como el reconocimiento de partes del discurso, análisis de entidades nombradas, análisis sintáctico y semántico, entre otros. \r\n\r\n\r\nAquí te explico cómo algunas de sus funcionalidades específicas pueden facilitar la implementación de actividades de aprendizaje de la redacción en el nivel medio superior y superior, desde un enfoque andragógico:\r\n\r\nSegmentación de texto en oraciones y palabras.\r\nEsta funcionalidad puede ayudar a los estudiantes a identificar la estructura básica de los textos. \r\nAl descomponer un texto en sus componentes más básicos, los estudiantes pueden empezar a entender cómo se construyen las oraciones y párrafos, lo cual es fundamental para la redacción.\r\n\r\nReconocimiento de partes del discurso (POS tagging): Comprender las partes del discurso es esencial para el análisis sintáctico y la construcción de oraciones coherentes y complejas. Stanza puede ayudar a los estudiantes a identificar automáticamente sustantivos, verbos, adjetivos, etc., en los textos que escriben o analizan, lo que facilita el aprendizaje de la gramática y la sintaxis de manera aplicada.\r\nAnálisis de entidades nombradas (NER): Esta herramienta puede ser útil para actividades de redacción que involucren investigación y análisis de textos. \r\n\r\nAl identificar personas, lugares, organizaciones y otros tipos de entidades dentro de un texto, los estudiantes pueden aprender a distinguir entre diferentes tipos de información y a utilizarlos adecuadamente en sus escritos.\r\n\r\nAnálisis sintáctico: El análisis de la estructura de las oraciones puede mejorar significativamente la calidad de la escritura. Stanza permite analizar cómo las palabras en una oración se relacionan entre sí, lo que puede ayudar a los estudiantes a comprender y aplicar conceptos de coherencia y cohesión en sus textos.\r\n\r\nAnálisis de dependencias: Esta funcionalidad ofrece una visión detallada de las relaciones sintácticas dentro de las oraciones, lo cual es crucial para construir oraciones complejas y bien formadas. Los estudiantes pueden utilizar esta herramienta para revisar y mejorar la estructura sintáctica de sus escritos.\r\nLematización y stemming: Ayuda a los estudiantes a comprender la raíz de las palabras y sus variaciones, lo cual es útil para la ampliación del vocabulario y la correcta utilización de las palabras en diferentes contextos.\r\nDesde el punto de vista andragógico, el uso de herramientas como Stanza puede fomentar un enfoque más autodirigido y reflexivo hacia el aprendizaje de la redacción. Los estudiantes pueden utilizar estas herramientas para analizar y mejorar sus propios textos, recibir retroalimentación inmediata sobre aspectos específicos de su escritura, y llevar a cabo investigaciones lingüísticas que enriquezcan su comprensión del idioma. La incorporación de tecnologías digitales en el aprendizaje se alinea con las necesidades y estilos de aprendizaje de los adultos, promoviendo la autonomía, la autoevaluación y la aplicación práctica de los conocimientos adquiridos.\r\n\r\n \r\nAnexo I. Requerimiento funcional a nivel sintáctico [Producto 1]\r\nEn esta sección vamos a describir las tareas que deberá realizar el o la profesional identificada como usuaria / usuario líder. Para este caso es un profesional competente en la enseñanza y el aprendizaje del idioma castellano y que posee este idioma como lenguaje materno. Entonces requerimos de sus servicios profesionales par que: \r\n[Subproducto 11] Elaborar una secuencia [didáctica] estándar de como enseñaría a mejorar las habilidades de un estudiante partiendo de un análisis sintáctico. No requerimos que nos describa como hacer un análisis sintáctico, sino que como enseña a redactar al estudiante empleando sus diferentes técnicas y métodos dentro del nivel sintáctico. \r\nEjemplo:\r\n\r\nPaso 5: Evaluar. \r\nCuando el estudiante termina de redactar un texto tengo que corregir. Entonces tomo un boli rojo y comienzo a leer y marco las palabras repetidas, pero también cuando no hay relación entre género y número; y así, [en este caso la descripción tiene que ser detallada]\r\nPaso 6: Retro alimentación de la evaluación\r\nEn este momento trato de orientar mis comentarios hacia las fortalezas del estudiante y después le indico como es que puede mejorar su redacción, le presento ejemplos de otros textos que son cercanos a su estilo [en este caso la descripción tiene que ser detallada]\r\n[Subroducto 12] Con los resultados del producto [11] es importante que reporte cuáles tareas podrías ser reemplazadas por funciones en la funcionalidad de análisis semántico de AIdeaText. Es importante que grafique, empleando la interfase de AIdeaText, como se vería está funcionalidad. En ese sentido, es importante que anote que visualizaciones funcionarían mejor (o si ninguna funciona) que otras o si se requiere implementar otras funcionalidades que, de hacerlo de manera manual, serían muy laboriosas de hacer. \r\nEjemplo: \r\nFunción evaluar: La aplicación, al presentar una visualización ya está entregado una evaluación. Pero para el caso sintáctico no sería mejor que devuelva el mismo escrito, pero señalando con un círculo donde se encuentran las palabras repetidas, por ejemplo. [Se debe dibujar como se vería esta función en la interfase]\r\n', 'morphosyntax_clear_chat_sebastian.marroquin@aideatext.ai': False, 'concept_graph': '', 'initialized': True, 'feedback_text_es': '', 'semantic_clear_chat_sebastian.marroquin@aideatext.ai': False, 'discourse_clear_chat_sebastian.marroquin@aideatext.ai': False, 'key_concepts': [('análisis', 12.0), ('estudiante', 12.0), ('texto', 11.0), ('oración', 7.0), ('redacción', 6.0), ('funcionalidad', 6.0), ('aprendizaje', 6.0), ('palabra', 6.0), (']', 6.0), ('herramienta', 5.0)], 'logged_in': True, 'feedback_email_es': '', 'morphosyntax_chat_history': [], 'feedback_submit_es': False, 'toggle_graph': False, 'entity_graph': '', 'graph_id': 'semantic-float-4a0c84f3', 'semantic_file_uploader_sebastian.marroquin@aideatext.ai': None, 'delete_Uso de stanza en el análisis sintác.txt': False, 'page': 'user'}
diff --git a/modules/semantic/semantic_float.py b/modules/semantic/semantic_float.py
new file mode 100644
index 0000000000000000000000000000000000000000..043ab99ab13630b25c8bbbedb4a734b627e4a337
--- /dev/null
+++ b/modules/semantic/semantic_float.py
@@ -0,0 +1,213 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+
+
+'''
+
+# Lista de estilos de sombra y transición (sin cambios)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+
+ """, height=0)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
+'''
+
+
+# Lista de estilos de sombra (puedes ajustar según tus preferencias)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica."""
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ """
+ Crea un contenedor flotante para el gráfico de visualización semántica.
+
+ :param content: Contenido HTML o Markdown para el gráfico
+ :param width: Ancho del contenedor
+ :param height: Altura del contenedor
+ :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right')
+ :param shadow: Índice del estilo de sombra a utilizar
+ :param transition: Índice del estilo de transición a utilizar
+ """
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ """
+ Crea un contenedor flotante genérico.
+
+ :param content: Contenido HTML o Markdown para el contenedor
+ :param css: Estilos CSS adicionales
+ """
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ """
+ Cambia la visibilidad de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param visible: True para mostrar, False para ocultar
+ """
+ display = "block" if visible else "none"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+def update_float_content(box_id, new_content):
+ """
+ Actualiza el contenido de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param new_content: Nuevo contenido HTML o Markdown
+ """
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario
\ No newline at end of file
diff --git a/modules/semantic/semantic_float68ok.py b/modules/semantic/semantic_float68ok.py
new file mode 100644
index 0000000000000000000000000000000000000000..a57a08d49e3c3945b90a1a358305e520a6e1d650
--- /dev/null
+++ b/modules/semantic/semantic_float68ok.py
@@ -0,0 +1,467 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+import streamlit.components.v1 as stc
+
+########################## PRUEBA 1 #########################
+ # COMBINADO CON SEMANCTIC_INTERFACE_68OK APARECEN DOS BOX FLOTANTES
+# Lista de estilos de sombra (puedes ajustar según tus preferencias)
+
+'''
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+####################################################
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ }
+ css = f"""
+ width: {width};
+ height: {height};
+ position: fixed;
+ z-index: 9999;
+ background-color: white;
+ border: 1px solid #ddd;
+ padding: 10px;
+ overflow: auto;
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+ return float_box(content, css=css)
+
+#########################################################
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ st.markdown(f"""
+
+ {content}
+
+ """, unsafe_allow_html=True)
+ return box_id
+
+#########################################################
+
+def toggle_float_visibility(box_id, visible):
+ """
+ Cambia la visibilidad de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param visible: True para mostrar, False para ocultar
+ """
+ display = "block" if visible else "none"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+###########################################################
+def update_float_content(box_id, new_content):
+ """
+ Actualiza el contenido de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param new_content: Nuevo contenido HTML o Markdown
+ """
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario
+'''
+
+################################################# version backup #########################
+ # COMBINADO CON SEMANCTIC_INTERFACE_68OK APARECEN SOLO UN CUADRO A LA DERECJHA Y AL CENTRO
+ # Lista de estilos de sombra (puedes ajustar según tus preferencias)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+
+def semantic_float_init():
+ """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica."""
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ """
+ Crea un contenedor flotante para el gráfico de visualización semántica.
+
+ :param content: Contenido HTML o Markdown para el gráfico
+ :param width: Ancho del contenedor
+ :param height: Altura del contenedor
+ :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right')
+ :param shadow: Índice del estilo de sombra a utilizar
+ :param transition: Índice del estilo de transición a utilizar
+ """
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ """
+ Crea un contenedor flotante genérico.
+
+ :param content: Contenido HTML o Markdown para el contenedor
+ :param css: Estilos CSS adicionales
+ """
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ """
+ Cambia la visibilidad de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param visible: True para mostrar, False para ocultar
+ """
+ display = "block" if visible else "none"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+def update_float_content(box_id, new_content):
+ """
+ Actualiza el contenido de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param new_content: Nuevo contenido HTML o Markdown
+ """
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario
+#################FIN BLOQUE DEL BACK UP#################################################
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+'''
+############ TEST #########################################
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="center-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ position: fixed;
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['center-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ z-index: 9999;
+ display: block !important;
+ background-color: white;
+ border: 1px solid #ddd;
+ border-radius: 5px;
+ padding: 10px;
+ overflow: auto;
+ """
+
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ html_content = f"""
+
+ {content}
+
+
+ """
+
+ components.html(html_content, height=600, scrolling=True)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
+
+
+
+
+
+
+
+
+
+
+############BackUp #########################################
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+# Lista de estilos de sombra y transición (sin cambios)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+
+ """, height=0)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
+'''
\ No newline at end of file
diff --git a/modules/semantic/semantic_float_old.py b/modules/semantic/semantic_float_old.py
new file mode 100644
index 0000000000000000000000000000000000000000..192c7a46004ab8b35c2046cde482a001088475c7
--- /dev/null
+++ b/modules/semantic/semantic_float_old.py
@@ -0,0 +1,220 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+import base64
+
+'''
+
+# Lista de estilos de sombra y transición (sin cambios)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+
+ """, height=0)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
+'''
+
+
+# Lista de estilos de sombra (puedes ajustar según tus preferencias)
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+
+def encode_image_to_base64(image_path):
+ with open(image_path, "rb") as image_file:
+ encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
+ return f"data:image/png;base64,{encoded_string}"
+
+
+def semantic_float_init():
+ """Inicializa los estilos necesarios para los elementos flotantes en la interfaz semántica."""
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+def float_graph(content, width="40%", height="60%", position="bottom-right", shadow=0, transition=0):
+ """
+ Crea un contenedor flotante para el gráfico de visualización semántica.
+
+ :param content: Contenido HTML o Markdown para el gráfico
+ :param width: Ancho del contenedor
+ :param height: Altura del contenedor
+ :param position: Posición del contenedor ('top-left', 'top-right', 'bottom-left', 'bottom-right')
+ :param shadow: Índice del estilo de sombra a utilizar
+ :param transition: Índice del estilo de transición a utilizar
+ """
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ }
+
+ css = f"""
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['bottom-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ """
+
+ return float_box(content, css=css)
+
+def float_box(content, css=""):
+ """
+ Crea un contenedor flotante genérico.
+
+ :param content: Contenido HTML o Markdown para el contenedor
+ :param css: Estilos CSS adicionales
+ """
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ """
+ Cambia la visibilidad de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param visible: True para mostrar, False para ocultar
+ """
+ display = "block" if visible else "none"
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+def update_float_content(box_id, new_content):
+ """
+ Actualiza el contenido de un contenedor flotante.
+
+ :param box_id: ID del contenedor flotante
+ :param new_content: Nuevo contenido HTML o Markdown
+ """
+ st.markdown(f"""
+
+ """, unsafe_allow_html=True)
+
+# Puedes agregar más funciones específicas para la interfaz semántica según sea necesario
diff --git a/modules/semantic/semantic_float_reset.py b/modules/semantic/semantic_float_reset.py
new file mode 100644
index 0000000000000000000000000000000000000000..1d782eb27f4493283de556391ef49334ed6e7256
--- /dev/null
+++ b/modules/semantic/semantic_float_reset.py
@@ -0,0 +1,94 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+import base64
+
+# Lista de estilos de sombra
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+
+]
+
+###################################################################################
+def semantic_float_init():
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ components.html("""
+
+
+ """, height=0)
+
+def float_graph(content):
+ js = f"""
+
+ """
+ components.html(js, height=0)
+
+def toggle_float_visibility(visible):
+ js = f"""
+
+ """
+ components.html(js, height=0)
+
+def update_float_content(new_content):
+ js = f"""
+
+ """
+ components.html(js, height=0)
\ No newline at end of file
diff --git a/modules/semantic/semantic_float_reset_23-9-2024.py b/modules/semantic/semantic_float_reset_23-9-2024.py
new file mode 100644
index 0000000000000000000000000000000000000000..5d8fb602fec66518348fcfa37e1a272284a7adf4
--- /dev/null
+++ b/modules/semantic/semantic_float_reset_23-9-2024.py
@@ -0,0 +1,128 @@
+import streamlit as st
+import uuid
+import streamlit.components.v1 as components
+import base64
+
+# Lista de estilos de sombra
+shadow_list = [
+ "box-shadow: rgba(0, 0, 0, 0.1) 0px 4px 12px;",
+ "box-shadow: rgba(0, 0, 0, 0.15) 0px 5px 15px 0px;",
+ "box-shadow: rgba(0, 0, 0, 0.05) 0px 6px 24px 0px, rgba(0, 0, 0, 0.08) 0px 0px 0px 1px;",
+ "box-shadow: rgba(0, 0, 0, 0.16) 0px 10px 36px 0px, rgba(0, 0, 0, 0.06) 0px 0px 0px 1px;",
+]
+
+# Lista de estilos de transición
+transition_list = [
+ "transition: all 0.3s ease;",
+ "transition: all 0.5s cubic-bezier(0.25, 0.8, 0.25, 1);",
+ "transition: all 0.4s cubic-bezier(0.165, 0.84, 0.44, 1);",
+]
+
+def semantic_float_init():
+ components.html("""
+
+ """, height=0)
+
+def float_graph(content, width="40%", height="60%", position="center-right", shadow=0, transition=0):
+ position_css = {
+ "top-left": "top: 20px; left: 20px;",
+ "top-right": "top: 20px; right: 20px;",
+ "bottom-left": "bottom: 20px; left: 20px;",
+ "bottom-right": "bottom: 20px; right: 20px;",
+ "center-right": "top: 50%; right: 20px; transform: translateY(-50%);"
+ }
+
+ css = f"""
+ position: fixed;
+ width: {width};
+ height: {height};
+ {position_css.get(position, position_css['center-right'])}
+ {shadow_list[shadow % len(shadow_list)]}
+ {transition_list[transition % len(transition_list)]}
+ z-index: 9999;
+ display: block !important;
+ background-color: white;
+ border: 1px solid #ddd;
+ border-radius: 5px;
+ padding: 10px;
+ overflow: auto;
+ """
+
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+ {content}
+
+
+ """, height=0)
+ return box_id
+
+def float_box(content, css=""):
+ box_id = f"semantic-float-{str(uuid.uuid4())[:8]}"
+ components.html(f"""
+
+ {content}
+
+
+ """, height=0)
+ return box_id
+
+def toggle_float_visibility(box_id, visible):
+ display = "block" if visible else "none"
+ components.html(f"""
+
+ """, height=0)
+
+def update_float_content(box_id, new_content):
+ components.html(f"""
+
+ """, height=0)
\ No newline at end of file
diff --git a/modules/semantic/semantic_interfaceBackUp_2092024_1800.py b/modules/semantic/semantic_interfaceBackUp_2092024_1800.py
new file mode 100644
index 0000000000000000000000000000000000000000..f9ef8533a44841e7fdcc66abd8b4c7a25b9e2914
--- /dev/null
+++ b/modules/semantic/semantic_interfaceBackUp_2092024_1800.py
@@ -0,0 +1,146 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2, tab3, tab4, tab5 = st.tabs(["Upload", "Analyze", "Results", "Chat", "Export"])
+
+ with tab1:
+ tab21, tab22 = st.tabs(["File Management", "File Analysis"])
+
+ with tab21:
+ st.subheader("Upload and Manage Files")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.write("No files uploaded yet.")
+
+ with tab22:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ with tab2:
+ st.subheader("Analysis Results")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ col1, col2 = st.columns(2)
+ with col1:
+ if 'concept_graph' in st.session_state:
+ st.subheader("Concept Graph")
+ st.pyplot(st.session_state.concept_graph)
+ with col2:
+ if 'entity_graph' in st.session_state:
+ st.subheader("Entity Graph")
+ st.pyplot(st.session_state.entity_graph)
+
+ with tab3:
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+
+ with chat_container:
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+
+ user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with tab4:
+ st.subheader("Export Results")
+ # Add export functionality here
+
+ with tab5:
+ st.subheader("Help")
+ # Add help information here
\ No newline at end of file
diff --git a/modules/semantic/semantic_interfaceBorrados.py b/modules/semantic/semantic_interfaceBorrados.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b2167adff34762e28fbd9ee65c64dd371ef713c
--- /dev/null
+++ b/modules/semantic/semantic_interfaceBorrados.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
diff --git a/modules/semantic/semantic_interfaceKoKo.py b/modules/semantic/semantic_interfaceKoKo.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a704b30129e521564b9222face9ec5c818bafea
--- /dev/null
+++ b/modules/semantic/semantic_interfaceKoKo.py
@@ -0,0 +1,239 @@
+import streamlit as st
+from streamlit_float import *
+import logging
+import sys
+import io
+from io import BytesIO
+from datetime import datetime
+import re
+import base64
+import matplotlib.pyplot as plt
+import plotly.graph_objects as go
+import pandas as pd
+import numpy as np
+
+from .flexible_analysis_handler import FlexibleAnalysisHandler
+
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+from .semantic_process import process_semantic_analysis
+
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+
+semantic_float_init()
+logging.basicConfig(level=logging.DEBUG)
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+
+##
+def fig_to_base64(fig):
+ buf = io.BytesIO()
+ fig.savefig(buf, format='png')
+ buf.seek(0)
+ img_str = base64.b64encode(buf.getvalue()).decode()
+ return f'
'
+##
+
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ #st.set_page_config(layout="wide")
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ if 'show_graph' not in st.session_state:
+ st.session_state.show_graph = False
+
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = None
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ if 'show_graph' not in st.session_state:
+ st.session_state.show_graph = False
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ col1, col2 = st.columns([2, 1])
+
+ with col1:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in reversed(st.session_state.semantic_chat_history):
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col2:
+ st.subheader("Document Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = manage_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ logger.debug("Calling process_semantic_analysis")
+ analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code)
+
+ # Crear una instancia de FlexibleAnalysisHandler con los resultados del análisis
+ handler = FlexibleAnalysisHandler(analysis_result)
+
+ logger.debug(f"Type of analysis_result: {type(analysis_result)}")
+ logger.debug(f"Keys in analysis_result: {analysis_result.keys() if isinstance(analysis_result, dict) else 'Not a dict'}")
+
+ st.session_state.concept_graph = handler.get_concept_graph()
+ st.session_state.entity_graph = handler.get_entity_graph()
+ st.session_state.key_concepts = handler.get_key_concepts()
+ st.session_state.show_graph = True
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("File Management")
+
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+
+ st.subheader("Manage Uploaded Files")
+
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ #########################################################################################################################
+ # Floating graph visualization
+ if st.session_state.show_graph:
+ if st.session_state.graph_id is None:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+
+ graph_id = st.session_state.graph_id
+
+ if 'key_concepts' in st.session_state:
+ key_concepts_html = "Key Concepts:
" + ', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]) + "
"
+ update_float_content(graph_id, key_concepts_html)
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ update_float_content(graph_id, st.session_state.concept_graph)
+ else:
+ update_float_content(graph_id, "No concept graph available.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ update_float_content(graph_id, st.session_state.entity_graph)
+ else:
+ update_float_content(graph_id, "No entity graph available.")
+
+ if st.button("Close Graph", key="close_graph"):
+ toggle_float_visibility(graph_id, False)
+ st.session_state.show_graph = False
+ st.session_state.graph_id = None
+ st.rerun()
\ No newline at end of file
diff --git a/modules/semantic/semantic_interfaceSideBar.py b/modules/semantic/semantic_interfaceSideBar.py
new file mode 100644
index 0000000000000000000000000000000000000000..79f0777328d68330ea531f7104abbf8a4ab0fdfb
--- /dev/null
+++ b/modules/semantic/semantic_interfaceSideBar.py
@@ -0,0 +1,207 @@
+import streamlit as st
+from streamlit_float import *
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Sidebar for chat
+ with st.sidebar:
+ st.subheader("Chat with AI")
+
+ messages = st.container(height=400)
+
+ # Display chat messages
+ for message in st.session_state.semantic_chat_history:
+ with messages.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ # Chat input
+ if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')):
+ st.session_state.semantic_chat_history.append({"role": "user", "content": prompt})
+
+ with messages.chat_message("user"):
+ st.markdown(prompt)
+
+ with messages.chat_message("assistant"):
+ message_placeholder = st.empty()
+ full_response = ""
+
+ if prompt.startswith('/analyze_current'):
+ assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', ''))
+
+ # Simulate stream of response with milliseconds delay
+ for chunk in assistant_response.split():
+ full_response += chunk + " "
+ message_placeholder.markdown(full_response + "▌")
+ message_placeholder.markdown(full_response)
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response})
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Main content area
+ st.title("Semantic Analysis")
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Visualization
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_1.py b/modules/semantic/semantic_interface_1.py
new file mode 100644
index 0000000000000000000000000000000000000000..432858c935c551fef038a0d87eebc8602e139672
--- /dev/null
+++ b/modules/semantic/semantic_interface_1.py
@@ -0,0 +1,55 @@
+import streamlit as st
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot
+from ..database.database_oldFromV2 import store_semantic_result
+from ..text_analysis.semantic_analysis import perform_semantic_analysis
+from ..utils.widget_utils import generate_unique_key
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.subheader(t['title'])
+
+ # Inicializar el chatbot si no existe
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ # Sección para cargar archivo
+ uploaded_file = st.file_uploader(t['file_uploader'], type=['txt', 'pdf', 'docx', 'doc', 'odt'])
+ if uploaded_file:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ st.session_state.file_contents = file_contents
+
+ # Mostrar el historial del chat
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+ if "visualization" in message:
+ st.pyplot(message["visualization"])
+
+ # Input del usuario
+ user_input = st.chat_input(t['semantic_initial_message'], key=generate_unique_key('semantic', st.session_state.username))
+
+ if user_input:
+ # Procesar el input del usuario
+ response, visualization = process_semantic_analysis(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents'), t)
+
+ # Actualizar el historial del chat
+ chat_history.append({"role": "user", "content": user_input})
+ chat_history.append({"role": "assistant", "content": response, "visualization": visualization})
+ st.session_state.semantic_chat_history = chat_history
+
+ # Mostrar el resultado más reciente
+ with st.chat_message("assistant"):
+ st.write(response)
+ if visualization:
+ st.pyplot(visualization)
+
+ # Guardar el resultado en la base de datos si es un análisis
+ if user_input.startswith('/analisis_semantico'):
+ result = perform_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code)
+ store_semantic_result(st.session_state.username, st.session_state.file_contents, result)
+
+ # Botón para limpiar el historial del chat
+ if st.button(t['clear_chat'], key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_2.py b/modules/semantic/semantic_interface_2.py
new file mode 100644
index 0000000000000000000000000000000000000000..351f0319ae784b409a289b112c79caac25a3fbc3
--- /dev/null
+++ b/modules/semantic/semantic_interface_2.py
@@ -0,0 +1,167 @@
+import streamlit as st
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ #st.set_page_config(layout="wide")
+
+ # Estilo CSS personalizado
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
+
+ """, unsafe_allow_html=True)
+
+ # Inicializar el chatbot si no existe
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ # Contenedor para la gestión de archivos
+ with st.container():
+ st.markdown('', unsafe_allow_html=True)
+ col1, col2, col3, col4 = st.columns(4)
+
+ with col1:
+ if st.button(get_translation(t, 'upload_file', 'Upload File'), key=generate_unique_key('semantic', 'upload_button')):
+ uploaded_file = st.file_uploader(get_translation(t, 'file_uploader', 'Choose a file'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved to database successfully'))
+ st.session_state.file_contents = file_contents
+ st.rerun()
+ else:
+ st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
+
+ with col2:
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_file', 'Select a file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox(get_translation(t, 'file_list', 'File List'), options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+ if selected_file != get_translation(t, 'select_file', 'Select a file'):
+ if st.button(get_translation(t, 'load_file', 'Load File'), key=generate_unique_key('semantic', 'load_file')):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully'))
+ else:
+ st.error(get_translation(t, 'file_load_error', 'Error loading file'))
+
+ with col3:
+ if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')):
+ if 'file_contents' in st.session_state:
+ with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')):
+ graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code)
+ st.session_state.graph = graph
+ st.session_state.key_concepts = key_concepts
+ st.success(get_translation(t, 'analysis_completed', 'Analysis completed'))
+ else:
+ st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded'))
+
+ with col4:
+ if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')):
+ if selected_file and selected_file != get_translation(t, 'select_file', 'Select a file'):
+ if delete_file(st.session_state.username, selected_file, 'semantic'):
+ st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully'))
+ if 'file_contents' in st.session_state:
+ del st.session_state.file_contents
+ st.rerun()
+ else:
+ st.error(get_translation(t, 'file_delete_error', 'Error deleting file'))
+ else:
+ st.error(get_translation(t, 'no_file_selected', 'No file selected'))
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ # Crear dos columnas: una para el chat y otra para la visualización
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
+ # Chat interface
+ chat_container = st.container()
+
+ with chat_container:
+ # Mostrar el historial del chat
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+
+ # Input del usuario
+ user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ # Añadir el mensaje del usuario al historial
+ chat_history.append({"role": "user", "content": user_input})
+
+ # Generar respuesta del chatbot
+ chatbot = st.session_state.semantic_chatbot
+ response = chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents'))
+
+ # Añadir la respuesta del chatbot al historial
+ chat_history.append({"role": "assistant", "content": response})
+
+ # Actualizar el historial en session_state
+ st.session_state.semantic_chat_history = chat_history
+
+ # Forzar la actualización de la interfaz
+ st.rerun()
+
+ with col_graph:
+ st.subheader(get_translation(t, 'graph_title', 'Semantic Graph'))
+
+ # Mostrar conceptos clave en un expander horizontal
+ with st.expander(get_translation(t, 'key_concepts_title', 'Key Concepts'), expanded=True):
+ if 'key_concepts' in st.session_state:
+ st.markdown('', unsafe_allow_html=True)
+ for concept, freq in st.session_state.key_concepts:
+ st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if 'graph' in st.session_state:
+ st.pyplot(st.session_state.graph)
+
+ # Botón para limpiar el historial del chat
+ if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_2192024_1632.py b/modules/semantic/semantic_interface_2192024_1632.py
new file mode 100644
index 0000000000000000000000000000000000000000..cd2aff2f6a40d46999fd4548dd5697dd09f16e80
--- /dev/null
+++ b/modules/semantic/semantic_interface_2192024_1632.py
@@ -0,0 +1,244 @@
+import streamlit as st
+import logging
+import time
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization --1
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ # Create a container for the chat messages
+ chat_container = st.container()
+
+ # Display chat messages from history on app rerun
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+'''
+ # Accept user input
+ if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')):
+ # Add user message to chat history
+ st.session_state.semantic_chat_history.append({"role": "user", "content": prompt})
+ # Display user message in chat message container
+ with st.chat_message("user"):
+ st.markdown(prompt)
+
+ # Generate and display assistant response
+ with st.chat_message("assistant"):
+ message_placeholder = st.empty()
+ full_response = ""
+
+ if prompt.startswith('/analyze_current'):
+ assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', ''))
+
+ # Simulate stream of response with milliseconds delay
+ for chunk in assistant_response.split():
+ full_response += chunk + " "
+ time.sleep(0.05)
+ # Add a blinking cursor to simulate typing
+ message_placeholder.markdown(full_response + "▌")
+ message_placeholder.markdown(full_response)
+
+ # Add assistant response to chat history
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response})
+
+ # Add a clear chat button
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = [{"role": "assistant", "content": "Chat cleared. How can I assist you?"}]
+ st.rerun()
+
+'''
+
+'''
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+'''
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_3.py b/modules/semantic/semantic_interface_3.py
new file mode 100644
index 0000000000000000000000000000000000000000..a0f4b7392ea4e041d6885d07aa76e8209c6d03a9
--- /dev/null
+++ b/modules/semantic/semantic_interface_3.py
@@ -0,0 +1,182 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"""
+
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
+
+ """, unsafe_allow_html=True)
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ # Contenedor para la gestión de archivos
+ with st.container():
+ st.markdown('', unsafe_allow_html=True)
+ col1, col2, col3, col4 = st.columns(4)
+
+ with col1:
+ uploaded_file = st.file_uploader(get_translation(t, 'upload_file', 'Upload File'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.session_state.file_contents = file_contents
+ st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully'))
+ st.rerun()
+ else:
+ st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
+
+ with col2:
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully'))
+ else:
+ st.error(get_translation(t, 'file_load_error', 'Error loading file'))
+
+ with col3:
+ if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')):
+ if 'file_contents' in st.session_state:
+ with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success(get_translation(t, 'analysis_completed', 'Analysis completed'))
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded'))
+
+ with col4:
+ if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ if delete_file(st.session_state.username, selected_file, 'semantic'):
+ st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully'))
+ if 'file_contents' in st.session_state:
+ del st.session_state.file_contents
+ st.rerun()
+ else:
+ st.error(get_translation(t, 'file_delete_error', 'Error deleting file'))
+ else:
+ st.error(get_translation(t, 'no_file_selected', 'No file selected'))
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ # Contenedor para la sección de análisis
+ st.markdown('', unsafe_allow_html=True)
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
+ chat_container = st.container()
+
+ with chat_container:
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+
+ user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ with col_graph:
+ st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs'))
+
+ # Mostrar conceptos clave y entidades horizontalmente
+ if 'key_concepts' in st.session_state:
+ st.write(get_translation(t, 'key_concepts_title', 'Key Concepts'))
+ st.markdown('
', unsafe_allow_html=True)
+ for concept, freq in st.session_state.key_concepts:
+ st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if 'entities' in st.session_state:
+ st.write(get_translation(t, 'entities_title', 'Entities'))
+ st.markdown('
', unsafe_allow_html=True)
+ for entity, type in st.session_state.entities.items():
+ st.markdown(f'{entity}: {type}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ # Usar pestañas para mostrar los gráficos
+ tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab1:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+
+ with tab2:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_4.py b/modules/semantic/semantic_interface_4.py
new file mode 100644
index 0000000000000000000000000000000000000000..e984b533ef5c21debf78bf317456523ffa13928a
--- /dev/null
+++ b/modules/semantic/semantic_interface_4.py
@@ -0,0 +1,188 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+ st.markdown('', unsafe_allow_html=True)
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ st.markdown('', unsafe_allow_html=True)
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+ st.markdown('
', unsafe_allow_html=True)
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_5.py b/modules/semantic/semantic_interface_5.py
new file mode 100644
index 0000000000000000000000000000000000000000..b9d8a0e565a92c0c140a7af0f672cf489b50ddb9
--- /dev/null
+++ b/modules/semantic/semantic_interface_5.py
@@ -0,0 +1,195 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Estilo CSS personalizado
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_6.py b/modules/semantic/semantic_interface_6.py
new file mode 100644
index 0000000000000000000000000000000000000000..38df59957615774686e19ed33325ff346f948c7b
--- /dev/null
+++ b/modules/semantic/semantic_interface_6.py
@@ -0,0 +1,223 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+
+ # Crear el grafo flotante
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+
+ # Actualizar el contenido del grafo flotante
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ with st.expander("Chat with AI", expanded=True):
+ chat_container = st.container()
+
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+
+ # Botón para cerrar el grafo flotante
+ if st.button("Close Graph", key="close_graph"):
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ del st.session_state.graph_id
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_61.py b/modules/semantic/semantic_interface_61.py
new file mode 100644
index 0000000000000000000000000000000000000000..a2ac1e16628009ab14da1eb7cf94c967a22805ea
--- /dev/null
+++ b/modules/semantic/semantic_interface_61.py
@@ -0,0 +1,198 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+ col_left, col_right = st.columns([1, 1])
+
+ with col_left:
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([2, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True))
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_right:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_610.py b/modules/semantic/semantic_interface_610.py
new file mode 100644
index 0000000000000000000000000000000000000000..7584017bdca599b7345e9728e5cdd887be94c885
--- /dev/null
+++ b/modules/semantic/semantic_interface_610.py
@@ -0,0 +1,186 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Crear o actualizar el elemento flotante con el grafo
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ st.session_state.graph_id = float_graph(graph_content, width="30%", height="80%", position="center-right", shadow=2)
+ st.session_state.graph_visible = True
+
+ # Depuración: Mostrar los primeros 100 caracteres del grafo
+ st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}")
+ st.write(f"Debug: Graph ID: {st.session_state.graph_id}")
+
+ except Exception as e:
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+
+# Al final del archivo, después de todo el código:
+if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ components.html(f"""
+
+ """, height=0)
+
+# Añadir un botón para alternar la visibilidad del grafo
+if st.button("Toggle Graph Visibility"):
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', False)
+ if st.session_state.graph_visible:
+ st.write("Graph should be visible now")
+ else:
+ st.write("Graph should be hidden now")
+ st.experimental_rerun()
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_62.py b/modules/semantic/semantic_interface_62.py
new file mode 100644
index 0000000000000000000000000000000000000000..2cf56020a9772617f5f09a69450887c7e50614a8
--- /dev/null
+++ b/modules/semantic/semantic_interface_62.py
@@ -0,0 +1,206 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+ col_left, col_right = st.columns([3, 2])
+
+ with col_left:
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Crear o actualizar el grafo flotante
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat and Graph", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ if st.session_state.semantic_chat_history:
+ if st.button("Do you want to export the analysis before clearing?"):
+ # Aquí puedes implementar la lógica para exportar el análisis
+ st.success("Analysis exported successfully")
+ st.session_state.semantic_chat_history = []
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ del st.session_state.graph_id
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ st.rerun()
+
+ with col_right:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state and st.session_state.key_concepts:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_63.py b/modules/semantic/semantic_interface_63.py
new file mode 100644
index 0000000000000000000000000000000000000000..c32cf8d098b8ffb30163db19deef434fb2653d50
--- /dev/null
+++ b/modules/semantic/semantic_interface_63.py
@@ -0,0 +1,215 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ # Barra de progreso
+ progress_bar = st.progress(0)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+ col_left, col_right = st.columns([2, 3]) # Invertimos las proporciones
+
+ with col_left:
+ st.subheader("File Selection and Chat")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ progress_bar.progress(10)
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ progress_bar.progress(30)
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ progress_bar.progress(70)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ progress_bar.progress(100)
+ st.success("Analysis completed successfully")
+
+ # Crear o actualizar el grafo flotante
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ finally:
+ progress_bar.empty()
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat and Graph", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ if st.session_state.semantic_chat_history:
+ if st.button("Do you want to export the analysis before clearing?"):
+ # Aquí puedes implementar la lógica para exportar el análisis
+ st.success("Analysis exported successfully")
+ st.session_state.semantic_chat_history = []
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ del st.session_state.graph_id
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ st.rerun()
+
+ with col_right:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state and st.session_state.key_concepts:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_64.py b/modules/semantic/semantic_interface_64.py
new file mode 100644
index 0000000000000000000000000000000000000000..731678c700b81bdb8043dfa75ef875544ef44860
--- /dev/null
+++ b/modules/semantic/semantic_interface_64.py
@@ -0,0 +1,170 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el grafo flotante
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(graph_content, width="40%", height="60%", position="top-right")
+ else:
+ update_float_content(st.session_state.graph_id, graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'
{message["content"]}
', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Botón para alternar la visibilidad del grafo flotante
+ if 'graph_id' in st.session_state:
+ if st.button("Toggle Graph Visibility"):
+ toggle_float_visibility(st.session_state.graph_id, not st.session_state.get('graph_visible', True))
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_65.py b/modules/semantic/semantic_interface_65.py
new file mode 100644
index 0000000000000000000000000000000000000000..6ea2f629e954c34ed7407e1d06241dc5040f1879
--- /dev/null
+++ b/modules/semantic/semantic_interface_65.py
@@ -0,0 +1,176 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el grafo flotante
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(graph_content, width="40%", height="auto", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'
{message["content"]}
', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_66.py b/modules/semantic/semantic_interface_66.py
new file mode 100644
index 0000000000000000000000000000000000000000..cfa57fb062f09215e606e80cdbe9dfdacfcda759
--- /dev/null
+++ b/modules/semantic/semantic_interface_66.py
@@ -0,0 +1,186 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el contenido del grafo
+ st.session_state.graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(st.session_state.graph_content, width="40%", height="auto", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, st.session_state.graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ chat_container = st.container()
+ with chat_container:
+ st.markdown('', unsafe_allow_html=True)
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'
{message["content"]}
', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_67.py b/modules/semantic/semantic_interface_67.py
new file mode 100644
index 0000000000000000000000000000000000000000..952286e515d0b2aaded7d0e4ae21e5d4f6de8115
--- /dev/null
+++ b/modules/semantic/semantic_interface_67.py
@@ -0,0 +1,189 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el contenido del grafo
+ st.session_state.graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, st.session_state.graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_68.py b/modules/semantic/semantic_interface_68.py
new file mode 100644
index 0000000000000000000000000000000000000000..7d76233b4405d8e141d906c75f98c4cba2cb822e
--- /dev/null
+++ b/modules/semantic/semantic_interface_68.py
@@ -0,0 +1,195 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Aquí cambiamos el contenido del elemento flotante para mostrar un video de YouTube
+ youtube_video_id = "dQw4w9WgXcQ" # Cambia esto por el ID del video que quieras mostrar
+ video_content = f"""
+
+ """
+ st.session_state.graph_id = float_graph(video_content, width="800px", height="600px", position="center-right")
+ st.session_state.graph_visible = True
+ st.session_state.graph_content = video_content
+
+ # Log para depuración
+ st.write(f"Debug: Graph ID: {st.session_state.get('graph_id')}")
+ st.write(f"Debug: Graph visible: {st.session_state.get('graph_visible')}")
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_681.py b/modules/semantic/semantic_interface_681.py
new file mode 100644
index 0000000000000000000000000000000000000000..9384c9f712a4145c14d5d43a1657e11e92cbeaea
--- /dev/null
+++ b/modules/semantic/semantic_interface_681.py
@@ -0,0 +1,165 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ analyze_button = st.button("Analyze Document")
+ with col2:
+ toggle_graph = st.checkbox("Show Graph", value=st.session_state.graph_visible)
+
+ if analyze_button:
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ float_graph(graph_content)
+ st.session_state.graph_visible = True
+ toggle_float_visibility(True)
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ if toggle_graph != st.session_state.graph_visible:
+ st.session_state.graph_visible = toggle_graph
+ toggle_float_visibility(toggle_graph)
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible si está activado
+ if st.session_state.graph_visible:
+ toggle_float_visibility(True)
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_681_23-9-24.py b/modules/semantic/semantic_interface_681_23-9-24.py
new file mode 100644
index 0000000000000000000000000000000000000000..69477b49cf6dd9be21b06e330813aa2fe274e3ec
--- /dev/null
+++ b/modules/semantic/semantic_interface_681_23-9-24.py
@@ -0,0 +1,222 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(graph_content, width="800px", height="600px", position="center-right")
+ st.write(f"New graph created with ID: {st.session_state.graph_id}")
+ else:
+ update_float_content(st.session_state.graph_id, graph_content)
+ st.write(f"Existing graph updated with ID: {st.session_state.graph_id}")
+
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+
+ # Depuración
+ st.write(f"Debug: Graph ID: {st.session_state.graph_id}")
+ st.write(f"Debug: Graph visible: {st.session_state.graph_visible}")
+ st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}")
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+
+ st.markdown('', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ col1, col2, col3 = st.columns([3, 1, 1])
+
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Añadir botones para controlar el elemento flotante
+ col1, col2 = st.columns(2)
+ with col1:
+ if st.button("Show Graph"):
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ st.write(f"Showing graph with ID: {st.session_state.graph_id}")
+ else:
+ st.write("No graph available to show")
+
+ with col2:
+ if st.button("Hide Graph"):
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ st.session_state.graph_visible = False
+ st.write(f"Hiding graph with ID: {st.session_state.graph_id}")
+ else:
+ st.write("No graph available to hide")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_68ok copy.py b/modules/semantic/semantic_interface_68ok copy.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc16cf6f6c19e45753d432af4e13c32f5880841a
--- /dev/null
+++ b/modules/semantic/semantic_interface_68ok copy.py
@@ -0,0 +1,215 @@
+import streamlit as st
+import streamlit_float
+import streamlit_option_menu
+import streamlit_antd_components
+import streamlit.components.v1 as components
+import streamlit.components.v1 as stc
+import logging
+from .semantic_process import *
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float68ok import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ if concept_graph_base64:
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ st.session_state.graph_id = float_graph(graph_content, width="800px", height="600px", position="center-right")
+ st.session_state.graph_visible = True
+ st.session_state.graph_content = graph_content
+
+ if entity_graph_base64:
+ entity_graph_content = f"""
+ Entity Graph:
+
+ """
+ st.session_state.entity_graph_id = float_graph(entity_graph_content, width="800px", height="600px", position="bottom-left")
+
+ # Log para depuración
+ st.write(f"Debug: Graph ID: {st.session_state.get('graph_id')}")
+ st.write(f"Debug: Graph visible: {st.session_state.get('graph_visible')}")
+ st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph_base64[:100]}")
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ col1, col2, col3 = st.columns([3, 1, 1])
+
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+# Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+# Mostrar el grafo flotante si está visible
+if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ components.html(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ height=600,
+ scrolling=True
+ )
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_68ok.py b/modules/semantic/semantic_interface_68ok.py
new file mode 100644
index 0000000000000000000000000000000000000000..8a34d56f794a81dca38b251a21fba4ca16b5a6ad
--- /dev/null
+++ b/modules/semantic/semantic_interface_68ok.py
@@ -0,0 +1,98 @@
+import streamlit as st
+import logging
+from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.subheader(t['semantic_title'])
+
+ text_input = st.text_area(
+ t['warning_message'],
+ height=150,
+ key=generate_unique_key("semantic", "text_area")
+ )
+
+ if st.button(
+ t['results_title'],
+ key=generate_unique_key("semantic", "analyze_button")
+ ):
+ if text_input:
+ # Aquí iría tu lógica de análisis morfosintáctico
+ # Por ahora, solo mostraremos un mensaje de placeholder
+ st.info(t['analysis_placeholder'])
+ else:
+ st.warning(t['no_text_warning'])
+
+
+'''
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.title("Semantic Analysis")
+
+ tab1, tab2 = st.tabs(["File Management", "Analysis"])
+
+ with tab1:
+ display_file_management(lang_code, t)
+
+ with tab2:
+ # Aquí irá el código para el análisis semántico (lo implementaremos después)
+ st.write("Semantic analysis section will be implemented here.")
+
+def display_file_management(lang_code, t):
+ st.header("File Management")
+
+ # File Upload Section
+ st.subheader("Upload New File")
+ uploaded_file = st.file_uploader(
+ "Choose a file to upload",
+ type=['txt', 'pdf', 'docx', 'doc', 'odt'],
+ key=generate_unique_key('semantic', 'file_uploader')
+ )
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents, 'semantic'):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+
+
+ # File Management Section
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ try:
+ logger.info(f"Attempting to delete file: {file['file_name']} for user: {st.session_state.username}")
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ logger.info(f"File {file['file_name']} deleted successfully for user: {st.session_state.username}")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ logger.error(f"Failed to delete file {file['file_name']} for user: {st.session_state.username}")
+ except Exception as e:
+ st.error(f"An error occurred while deleting file {file['file_name']}: {str(e)}")
+ logger.exception(f"Exception occurred while deleting file {file['file_name']} for user: {st.session_state.username}")
+
+ else:
+ st.info("No files uploaded yet.")
+
+if __name__ == "__main__":
+ # This is just for testing purposes
+ class MockTranslation(dict):
+ def __getitem__(self, key):
+ return key
+
+ display_semantic_interface('en', {}, MockTranslation())
+
+ '''
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_68okBackUp.py b/modules/semantic/semantic_interface_68okBackUp.py
new file mode 100644
index 0000000000000000000000000000000000000000..a8d8eaeafca312b1fa3d6ef2fc81bf2bf7a844ad
--- /dev/null
+++ b/modules/semantic/semantic_interface_68okBackUp.py
@@ -0,0 +1,209 @@
+import streamlit as st
+import streamlit.components.v1 as components
+import streamlit.components.v1 as stc
+import logging
+from .semantic_process import *
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float68ok import *
+
+concept_graph_base64, entity_graph_base64, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Actualizar el contenido del grafo
+ st.session_state.graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, st.session_state.graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ col1, col2, col3 = st.columns([3, 1, 1])
+
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_69.py b/modules/semantic/semantic_interface_69.py
new file mode 100644
index 0000000000000000000000000000000000000000..9491c4a0cd7e20c82eeb3bed69d2f3417e92e1d4
--- /dev/null
+++ b/modules/semantic/semantic_interface_69.py
@@ -0,0 +1,167 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Crear o actualizar el elemento flotante con el grafo
+ graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(graph_content, width="540px", height="540px", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, graph_content)
+
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+
+ # Depuración: Mostrar el grafo directamente en la interfaz
+ #st.image(f"data:image/png;base64,{concept_graph}", caption="Concept Graph (Debug View)", use_column_width=True)
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_6_Ok-23-9-24.py b/modules/semantic/semantic_interface_6_Ok-23-9-24.py
new file mode 100644
index 0000000000000000000000000000000000000000..bcefdcf92a7c7f4f828d3ca74a88cd0132c3c27a
--- /dev/null
+++ b/modules/semantic/semantic_interface_6_Ok-23-9-24.py
@@ -0,0 +1,223 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+
+ # Crear el grafo flotante
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(
+ content="Loading graph...
",
+ width="40%",
+ height="60%",
+ position="bottom-right",
+ shadow=2,
+ transition=1
+ )
+
+ # Actualizar el contenido del grafo flotante
+ update_float_content(st.session_state.graph_id, f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """)
+
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ with st.expander("Chat with AI", expanded=True):
+ chat_container = st.container()
+
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state and st.session_state.concept_graph:
+ st.image(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state and st.session_state.entity_graph:
+ st.image(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+
+ # Botón para cerrar el grafo flotante
+ if st.button("Close Graph", key="close_graph"):
+ if 'graph_id' in st.session_state:
+ toggle_float_visibility(st.session_state.graph_id, False)
+ del st.session_state.graph_id
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_6_StarPoint.py b/modules/semantic/semantic_interface_6_StarPoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..b251f023c01e4c0d042605a5a97477c2269670e9
--- /dev/null
+++ b/modules/semantic/semantic_interface_6_StarPoint.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ with st.expander("Chat with AI", expanded=True):
+ chat_container = st.container()
+
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ col1, col2 = st.columns([3, 1])
+
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_7.py b/modules/semantic/semantic_interface_7.py
new file mode 100644
index 0000000000000000000000000000000000000000..650182ceb40ce32885615517efeb32786009d996
--- /dev/null
+++ b/modules/semantic/semantic_interface_7.py
@@ -0,0 +1,201 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git "a/modules/semantic/semantic_interface_Despu\303\251s.py" "b/modules/semantic/semantic_interface_Despu\303\251s.py"
new file mode 100644
index 0000000000000000000000000000000000000000..2d289197b51402d9a108eacfd06668a2394fbdfe
--- /dev/null
+++ "b/modules/semantic/semantic_interface_Despu\303\251s.py"
@@ -0,0 +1,116 @@
+import streamlit as st
+import logging
+from io import BytesIO
+import base64
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import (
+ initialize_mongodb_connection,
+ initialize_database_connections,
+ create_admin_user,
+ create_student_user,
+ get_user,
+ get_student_data,
+ store_file_contents,
+ retrieve_file_contents,
+ get_user_files,
+ delete_file,
+ store_application_request,
+ store_user_feedback,
+ store_morphosyntax_result,
+ store_semantic_result,
+ store_discourse_analysis_result,
+ store_chat_history,
+ export_analysis_and_chat,
+ get_user_analysis_summary,
+ get_user_recents_chats,
+ get_user_analysis_details
+ )
+
+from ..utils.widget_utils import generate_unique_key
+from .flexible_analysis_handler import FlexibleAnalysisHandler
+
+semantic_float_init()
+logging.basicConfig(level=logging.DEBUG)
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def fig_to_base64(fig):
+ buf = BytesIO()
+ fig.savefig(buf, format='png')
+ buf.seek(0)
+ img_str = base64.b64encode(buf.getvalue()).decode()
+ return f'
'
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.set_page_config(layout="wide")
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+ if 'show_graph' not in st.session_state:
+ st.session_state.show_graph = False
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = None
+
+ st.header(t['title'])
+
+ # Opción para introducir texto
+ text_input = st.text_area(
+ t['text_input_label'],
+ height=150,
+ placeholder=t['text_input_placeholder'],
+ )
+
+ # Opción para cargar archivo
+ uploaded_file = st.file_uploader(t['file_uploader'], type=['txt'])
+
+ if st.button(t['analyze_button']):
+ if text_input or uploaded_file is not None:
+ if uploaded_file:
+ text_content = uploaded_file.getvalue().decode('utf-8')
+ else:
+ text_content = text_input
+
+ # Realizar el análisis
+ analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code)
+
+ # Guardar el resultado en el estado de la sesión
+ st.session_state.semantic_result = analysis_result
+
+ # Mostrar resultados
+ display_semantic_results(st.session_state.semantic_result, lang_code, t)
+
+ # Guardar el resultado del análisis
+ if store_semantic_result(st.session_state.username, text_content, analysis_result):
+ st.success(t['success_message'])
+ else:
+ st.error(t['error_message'])
+ else:
+ st.warning(t['warning_message'])
+
+ elif 'semantic_result' in st.session_state:
+
+ # Si hay un resultado guardado, mostrarlo
+ display_semantic_results(st.session_state.semantic_result, lang_code, t)
+
+ else:
+ st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones
+
+def display_semantic_results(result, lang_code, t):
+ if result is None:
+ st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones
+ return
+
+ # Mostrar conceptos clave
+ with st.expander(t['key_concepts'], expanded=True):
+ concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']])
+ st.write(concept_text)
+
+ # Mostrar el gráfico de relaciones conceptuales
+ with st.expander(t['conceptual_relations'], expanded=True):
+ st.pyplot(result['relations_graph'])
diff --git a/modules/semantic/semantic_interface_StreamLitChat.py b/modules/semantic/semantic_interface_StreamLitChat.py
new file mode 100644
index 0000000000000000000000000000000000000000..e0eb527289912cd0295833c4e93cd2e91bd3b6d2
--- /dev/null
+++ b/modules/semantic/semantic_interface_StreamLitChat.py
@@ -0,0 +1,157 @@
+import streamlit as st
+import logging
+from streamlit_chat import message
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'messages' not in st.session_state:
+ st.session_state.messages = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+
+ st.title("Semantic Analysis")
+
+ # Crear dos columnas principales: una para el chat y otra para la visualización
+ chat_col, viz_col = st.columns([1, 1])
+
+ with chat_col:
+ st.subheader("Chat with AI")
+
+ # Contenedor para los mensajes del chat
+ chat_container = st.container()
+
+ # Input para el chat
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ # Añadir mensaje del usuario
+ st.session_state.messages.append({"role": "user", "content": user_input})
+
+ # Generar respuesta del asistente
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ # Añadir respuesta del asistente
+ st.session_state.messages.append({"role": "assistant", "content": response})
+
+ # Mostrar mensajes en el contenedor del chat
+ with chat_container:
+ for i, msg in enumerate(st.session_state.messages):
+ message(msg['content'], is_user=msg['role'] == 'user', key=f"{i}_{msg['role']}")
+
+ # Botón para limpiar el chat
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.messages = []
+ st.rerun()
+
+ with viz_col:
+ st.subheader("Visualization")
+
+ # Selector de archivo y botón de análisis
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Visualización de conceptos clave
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ # Pestañas para los gráficos
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+
+ # Sección de carga de archivos
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+
+ # Gestión de archivos cargados
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_Test.py b/modules/semantic/semantic_interface_Test.py
new file mode 100644
index 0000000000000000000000000000000000000000..435d574d8c6ff1b985807249e9a02061e0bd4a54
--- /dev/null
+++ b/modules/semantic/semantic_interface_Test.py
@@ -0,0 +1,22 @@
+import streamlit as st
+from streamlit_float import *
+
+# Limpiar el caché al inicio
+st.cache_data.clear()
+st.cache_resource.clear()
+
+
+# initialize float feature/capability
+float_init()
+
+col1, col2 = st.columns(2)
+
+# Fix/float the whole column
+col1.write("This entire column is fixed/floating")
+col1.float()
+
+with col2:
+ container = st.container()
+ # Fix/float a single container inside
+ container.write("This text is in a container that is fixed")
+ container.float()
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_afterParty.py b/modules/semantic/semantic_interface_afterParty.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d289197b51402d9a108eacfd06668a2394fbdfe
--- /dev/null
+++ b/modules/semantic/semantic_interface_afterParty.py
@@ -0,0 +1,116 @@
+import streamlit as st
+import logging
+from io import BytesIO
+import base64
+from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import (
+ initialize_mongodb_connection,
+ initialize_database_connections,
+ create_admin_user,
+ create_student_user,
+ get_user,
+ get_student_data,
+ store_file_contents,
+ retrieve_file_contents,
+ get_user_files,
+ delete_file,
+ store_application_request,
+ store_user_feedback,
+ store_morphosyntax_result,
+ store_semantic_result,
+ store_discourse_analysis_result,
+ store_chat_history,
+ export_analysis_and_chat,
+ get_user_analysis_summary,
+ get_user_recents_chats,
+ get_user_analysis_details
+ )
+
+from ..utils.widget_utils import generate_unique_key
+from .flexible_analysis_handler import FlexibleAnalysisHandler
+
+semantic_float_init()
+logging.basicConfig(level=logging.DEBUG)
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def fig_to_base64(fig):
+ buf = BytesIO()
+ fig.savefig(buf, format='png')
+ buf.seek(0)
+ img_str = base64.b64encode(buf.getvalue()).decode()
+ return f'
'
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ st.set_page_config(layout="wide")
+
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+ if 'show_graph' not in st.session_state:
+ st.session_state.show_graph = False
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = None
+
+ st.header(t['title'])
+
+ # Opción para introducir texto
+ text_input = st.text_area(
+ t['text_input_label'],
+ height=150,
+ placeholder=t['text_input_placeholder'],
+ )
+
+ # Opción para cargar archivo
+ uploaded_file = st.file_uploader(t['file_uploader'], type=['txt'])
+
+ if st.button(t['analyze_button']):
+ if text_input or uploaded_file is not None:
+ if uploaded_file:
+ text_content = uploaded_file.getvalue().decode('utf-8')
+ else:
+ text_content = text_input
+
+ # Realizar el análisis
+ analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code)
+
+ # Guardar el resultado en el estado de la sesión
+ st.session_state.semantic_result = analysis_result
+
+ # Mostrar resultados
+ display_semantic_results(st.session_state.semantic_result, lang_code, t)
+
+ # Guardar el resultado del análisis
+ if store_semantic_result(st.session_state.username, text_content, analysis_result):
+ st.success(t['success_message'])
+ else:
+ st.error(t['error_message'])
+ else:
+ st.warning(t['warning_message'])
+
+ elif 'semantic_result' in st.session_state:
+
+ # Si hay un resultado guardado, mostrarlo
+ display_semantic_results(st.session_state.semantic_result, lang_code, t)
+
+ else:
+ st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones
+
+def display_semantic_results(result, lang_code, t):
+ if result is None:
+ st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones
+ return
+
+ # Mostrar conceptos clave
+ with st.expander(t['key_concepts'], expanded=True):
+ concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']])
+ st.write(concept_text)
+
+ # Mostrar el gráfico de relaciones conceptuales
+ with st.expander(t['conceptual_relations'], expanded=True):
+ st.pyplot(result['relations_graph'])
diff --git a/modules/semantic/semantic_interface_backup2092024_1930 copy.py b/modules/semantic/semantic_interface_backup2092024_1930 copy.py
new file mode 100644
index 0000000000000000000000000000000000000000..fab61a80830dc404e0c3d7694f93803f900061b5
--- /dev/null
+++ b/modules/semantic/semantic_interface_backup2092024_1930 copy.py
@@ -0,0 +1,188 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+ st.markdown('', unsafe_allow_html=True)
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ st.markdown('', unsafe_allow_html=True)
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+ st.markdown('
', unsafe_allow_html=True)
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_backup2092024_1930.py b/modules/semantic/semantic_interface_backup2092024_1930.py
new file mode 100644
index 0000000000000000000000000000000000000000..3d97ce833c0da8a58ea642ca760ba50503b998a9
--- /dev/null
+++ b/modules/semantic/semantic_interface_backup2092024_1930.py
@@ -0,0 +1,192 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+from .flexible_analysis_handler import FlexibleAnalysisHandler # Añade esta línea
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code)
+
+ handler = FlexibleAnalysisHandler(analysis_result)
+
+ st.session_state.concept_graph = handler.get_concept_graph()
+ st.session_state.entity_graph = handler.get_entity_graph()
+ st.session_state.key_concepts = handler.get_key_concepts()
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+ st.markdown('', unsafe_allow_html=True)
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+ st.markdown('
', unsafe_allow_html=True)
+
+ user_input = st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ st.markdown('', unsafe_allow_html=True)
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
+ st.markdown('
', unsafe_allow_html=True)
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_backup_2092024.py b/modules/semantic/semantic_interface_backup_2092024.py
new file mode 100644
index 0000000000000000000000000000000000000000..549e15f8d5e26c1ecfbe0bff01c05f539da7a296
--- /dev/null
+++ b/modules/semantic/semantic_interface_backup_2092024.py
@@ -0,0 +1,165 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"""
+
+ {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
+
+ """, unsafe_allow_html=True)
+
+ # File management container
+ st.markdown('', unsafe_allow_html=True)
+ col1, col2, col3, col4 = st.columns(4)
+
+ with col1:
+ if st.button("Upload File", key=generate_unique_key('semantic', 'upload_button')):
+ st.session_state.show_uploader = True
+
+ with col2:
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ with col3:
+ analyze_button = st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document'))
+
+ with col4:
+ delete_button = st.button("Delete File", key=generate_unique_key('semantic', 'delete_file'))
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ # File uploader (hidden by default)
+ if st.session_state.get('show_uploader', False):
+ uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.session_state.file_contents = file_contents
+ st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully'))
+ st.session_state.show_uploader = False # Hide uploader after successful upload
+ else:
+ st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
+
+
+ # Contenedor para la sección de análisis
+ st.markdown('', unsafe_allow_html=True)
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
+ chat_container = st.container()
+
+ with chat_container:
+ chat_history = st.session_state.get('semantic_chat_history', [])
+ for message in chat_history:
+ with st.chat_message(message["role"]):
+ st.write(message["content"])
+
+ user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
+
+ if user_input:
+ chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
+
+ chat_history.append({"role": "assistant", "content": response})
+ st.session_state.semantic_chat_history = chat_history
+
+ with col_graph:
+ st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs'))
+
+ # Mostrar conceptos clave y entidades horizontalmente
+ if 'key_concepts' in st.session_state:
+ st.write(get_translation(t, 'key_concepts_title', 'Key Concepts'))
+ st.markdown('
', unsafe_allow_html=True)
+ for concept, freq in st.session_state.key_concepts:
+ st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if 'entities' in st.session_state:
+ st.write(get_translation(t, 'entities_title', 'Entities'))
+ st.markdown('
', unsafe_allow_html=True)
+ for entity, type in st.session_state.entities.items():
+ st.markdown(f'{entity}: {type}', unsafe_allow_html=True)
+ st.markdown('
', unsafe_allow_html=True)
+
+ # Usar pestañas para mostrar los gráficos
+ tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab1:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+
+ with tab2:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+
+ st.markdown('
', unsafe_allow_html=True)
+
+ if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
+ st.session_state.semantic_chat_history = []
+ st.rerun()
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_backup_2192024_1230.py b/modules/semantic/semantic_interface_backup_2192024_1230.py
new file mode 100644
index 0000000000000000000000000000000000000000..241407616ae3ce590be4cb7268b82eef2325d8a8
--- /dev/null
+++ b/modules/semantic/semantic_interface_backup_2192024_1230.py
@@ -0,0 +1,194 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ with st.expander("Chat with AI", expanded=True):
+ chat_container = st.container()
+
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_chatforup.py b/modules/semantic/semantic_interface_chatforup.py
new file mode 100644
index 0000000000000000000000000000000000000000..47c5d8789c4fa9de0c544bad98ecc137cfc2825c
--- /dev/null
+++ b/modules/semantic/semantic_interface_chatforup.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_stcontainerforchat.py b/modules/semantic/semantic_interface_stcontainerforchat.py
new file mode 100644
index 0000000000000000000000000000000000000000..47c5d8789c4fa9de0c544bad98ecc137cfc2825c
--- /dev/null
+++ b/modules/semantic/semantic_interface_stcontainerforchat.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_test610.py b/modules/semantic/semantic_interface_test610.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ae439ec0086c3baa0bc74374358a81e8f865135
--- /dev/null
+++ b/modules/semantic/semantic_interface_test610.py
@@ -0,0 +1,212 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+#from .semantic_float import semantic_float_init, float_graph, toggle_float_visibility, update_float_content
+from .semantic_float_reset import *
+
+logger = logging.getLogger(__name__)
+semantic_float_init()
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicialización del chatbot y el historial del chat
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ # Inicializar el estado del grafo si no existe
+ if 'graph_visible' not in st.session_state:
+ st.session_state.graph_visible = False
+ if 'graph_content' not in st.session_state:
+ st.session_state.graph_content = ""
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ st.markdown(f"{t['semantic_initial_message']}
", unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---")
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Semantic Analysis")
+
+ st.subheader("File Selection and Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document"):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.session_state.current_file_contents = file_contents
+ st.success("Analysis completed successfully")
+
+ # Depuración: Mostrar los primeros 100 caracteres del grafo
+ logger.debug(f"Concept graph base64 (first 100 chars): {concept_graph[:100]}")
+ st.write(f"Debug: Concept graph base64 (first 100 chars): {concept_graph[:100]}")
+
+ # Actualizar el contenido del grafo
+ st.session_state.graph_content = f"""
+ Key Concepts:
+ {', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}
+
+ """
+ if 'graph_id' not in st.session_state:
+ st.session_state.graph_id = float_graph(st.session_state.graph_content, width="540px", height="540px", position="center-right")
+ else:
+ update_float_content(st.session_state.graph_id, st.session_state.graph_content)
+ toggle_float_visibility(st.session_state.graph_id, True)
+ st.session_state.graph_visible = True
+
+ # Depuración: Verificar si el grafo se está creando
+ logger.debug(f"Graph ID: {st.session_state.graph_id}")
+ logger.debug(f"Graph visible: {st.session_state.graph_visible}")
+
+ # Mostrar el grafo directamente en la interfaz para verificación
+ st.image(f"data:image/png;base64,{concept_graph}", caption="Concept Graph (Debug View)", use_column_width=True)
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ st.session_state.concept_graph = None
+ st.session_state.entity_graph = None
+ st.session_state.key_concepts = []
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ st.subheader("Chat with AI")
+
+ # Mostrar el historial del chat
+ for message in st.session_state.semantic_chat_history:
+ message_class = "user-message" if message["role"] == "user" else "assistant-message"
+ st.markdown(f'{message["content"]}
', unsafe_allow_html=True)
+
+ # Colocar la entrada de usuario y los botones en la parte inferior
+ st.markdown('', unsafe_allow_html=True)
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2, col3 = st.columns([3, 1, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+ with col3:
+ if 'graph_id' in st.session_state:
+ toggle_button = st.button("Toggle Graph", key="toggle_graph")
+ if toggle_button:
+ st.session_state.graph_visible = not st.session_state.get('graph_visible', True)
+ toggle_float_visibility(st.session_state.graph_id, st.session_state.graph_visible)
+ st.markdown('
', unsafe_allow_html=True)
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('current_file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('current_file_contents', ''))
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ # Asegurarse de que el grafo flotante permanezca visible después de las interacciones
+ if 'graph_id' in st.session_state and st.session_state.get('graph_visible', False):
+ toggle_float_visibility(st.session_state.graph_id, True)
+
+ # Mostrar el grafo flotante si está visible
+ if st.session_state.get('graph_visible', False) and 'graph_content' in st.session_state:
+ st.markdown(
+ f"""
+
+ {st.session_state.graph_content}
+
+ """,
+ unsafe_allow_html=True
+ )
\ No newline at end of file
diff --git a/modules/semantic/semantic_interface_vOk.py b/modules/semantic/semantic_interface_vOk.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b2167adff34762e28fbd9ee65c64dd371ef713c
--- /dev/null
+++ b/modules/semantic/semantic_interface_vOk.py
@@ -0,0 +1,196 @@
+import streamlit as st
+import logging
+from .semantic_process import process_semantic_analysis
+from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
+from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
+from ..utils.widget_utils import generate_unique_key
+
+logger = logging.getLogger(__name__)
+
+def get_translation(t, key, default):
+ return t.get(key, default)
+
+def display_semantic_interface(lang_code, nlp_models, t):
+ # Inicializar el chatbot y el historial del chat al principio de la función
+ if 'semantic_chatbot' not in st.session_state:
+ st.session_state.semantic_chatbot = initialize_chatbot('semantic')
+
+ if 'semantic_chat_history' not in st.session_state:
+ st.session_state.semantic_chat_history = []
+
+ st.markdown("""
+
+ """, unsafe_allow_html=True)
+
+ # Mostrar el mensaje inicial como un párrafo estilizado
+ st.markdown(f"""
+
+ {t['semantic_initial_message']}
+
+ """, unsafe_allow_html=True)
+
+ tab1, tab2 = st.tabs(["Upload", "Analyze"])
+
+ with tab1:
+ st.subheader("File Management")
+ uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
+ if uploaded_file is not None:
+ file_contents = uploaded_file.getvalue().decode('utf-8')
+ if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
+ st.success(f"File {uploaded_file.name} uploaded and saved successfully")
+ else:
+ st.error("Error uploading file")
+
+ st.markdown("---") # Línea separadora
+
+ st.subheader("Manage Uploaded Files")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ if user_files:
+ for file in user_files:
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ st.write(file['file_name'])
+ with col2:
+ if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"):
+ if delete_file(st.session_state.username, file['file_name'], 'semantic'):
+ st.success(f"File {file['file_name']} deleted successfully")
+ st.rerun()
+ else:
+ st.error(f"Error deleting file {file['file_name']}")
+ else:
+ st.info("No files uploaded yet.")
+
+ with tab2:
+ st.subheader("Select File for Analysis")
+ user_files = get_user_files(st.session_state.username, 'semantic')
+ file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
+ selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
+
+ if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')):
+ if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'):
+ file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
+ if file_contents:
+ st.session_state.file_contents = file_contents
+ with st.spinner("Analyzing..."):
+ try:
+ nlp_model = nlp_models[lang_code]
+ concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code)
+ st.session_state.concept_graph = concept_graph
+ st.session_state.entity_graph = entity_graph
+ st.session_state.key_concepts = key_concepts
+ st.success("Analysis completed successfully")
+ except Exception as e:
+ logger.error(f"Error during analysis: {str(e)}")
+ st.error(f"Error during analysis: {str(e)}")
+ else:
+ st.error("Error loading file contents")
+ else:
+ st.error("Please select a file to analyze")
+
+ # Chat and Visualization
+ with st.container():
+ col_chat, col_graph = st.columns([1, 1])
+
+ with col_chat:
+ st.subheader("Chat with AI")
+
+ chat_container = st.container()
+ with chat_container:
+ for message in st.session_state.semantic_chat_history:
+ with st.chat_message(message["role"]):
+ st.markdown(message["content"])
+
+ user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input'))
+ col1, col2 = st.columns([3, 1])
+ with col1:
+ send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message'))
+ with col2:
+ clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat'))
+
+ if send_button and user_input:
+ st.session_state.semantic_chat_history.append({"role": "user", "content": user_input})
+
+ if user_input.startswith('/analyze_current'):
+ response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
+ else:
+ response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', ''))
+
+ st.session_state.semantic_chat_history.append({"role": "assistant", "content": response})
+ st.rerun()
+
+ if clear_button:
+ st.session_state.semantic_chat_history = []
+ st.rerun()
+
+ with col_graph:
+ st.subheader("Visualization")
+ if 'key_concepts' in st.session_state:
+ st.write("Key Concepts:")
+ st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]))
+
+ tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"])
+
+ with tab_concept:
+ if 'concept_graph' in st.session_state:
+ st.pyplot(st.session_state.concept_graph)
+ else:
+ st.info("No concept graph available. Please analyze a document first.")
+
+ with tab_entity:
+ if 'entity_graph' in st.session_state:
+ st.pyplot(st.session_state.entity_graph)
+ else:
+ st.info("No entity graph available. Please analyze a document first.")
diff --git a/modules/semantic/semantic_process.py b/modules/semantic/semantic_process.py
new file mode 100644
index 0000000000000000000000000000000000000000..0245b0dfc24145b2c34195057173298942d7584b
--- /dev/null
+++ b/modules/semantic/semantic_process.py
@@ -0,0 +1,51 @@
+import logging
+import io
+import base64
+import matplotlib.pyplot as plt
+from ..text_analysis.semantic_analysis import perform_semantic_analysis
+from .flexible_analysis_handler import FlexibleAnalysisHandler
+
+logger = logging.getLogger(__name__)
+
+def encode_image_to_base64(image_data):
+ return base64.b64encode(image_data).decode('utf-8')
+
+def process_semantic_analysis(file_contents, nlp_model, lang_code):
+ logger.info(f"Starting semantic analysis processing for language: {lang_code}")
+ try:
+ result = perform_semantic_analysis(file_contents, nlp_model, lang_code)
+
+ concept_graph = result['concept_graph']
+ entity_graph = result['entity_graph']
+ key_concepts = result['key_concepts']
+
+ # Convertir los gráficos a base64
+ concept_graph_base64 = encode_image_to_base64(concept_graph)
+ entity_graph_base64 = encode_image_to_base64(entity_graph)
+
+ logger.info("Semantic analysis processing completed successfully")
+ logger.debug(f"Concept graph base64 (first 100 chars): {concept_graph_base64[:100]}")
+ return concept_graph_base64, entity_graph_base64, key_concepts
+ except Exception as e:
+ logger.error(f"Error in semantic analysis processing: {str(e)}")
+ return None, None, []
+
+'''
+logger = logging.getLogger(__name__)
+logging.basicConfig(level=logging.DEBUG)
+
+def process_semantic_analysis(file_contents, nlp_model, lang_code):
+ logger.info(f"Starting semantic analysis for language: {lang_code}")
+ try:
+ logger.debug("Calling perform_semantic_analysis")
+ result = perform_semantic_analysis(file_contents, nlp_model, lang_code)
+ logger.debug(f"Result keys: {result.keys()}")
+ logger.debug(f"Type of concept_graph: {type(result['concept_graph'])}")
+ logger.debug(f"Type of entity_graph: {type(result['entity_graph'])}")
+ logger.debug(f"Number of key_concepts: {len(result['key_concepts'])}")
+ logger.info("Semantic analysis completed successfully")
+ return result['concept_graph'], result['entity_graph'], result['key_concepts']
+ except Exception as e:
+ logger.error(f"Error in semantic analysis: {str(e)}")
+ raise
+'''
\ No newline at end of file
diff --git a/modules/semantic/semantic_process_23-9-24.py b/modules/semantic/semantic_process_23-9-24.py
new file mode 100644
index 0000000000000000000000000000000000000000..6f3a7adb62c8f15ccd4616fd3e4b20beddf33be3
--- /dev/null
+++ b/modules/semantic/semantic_process_23-9-24.py
@@ -0,0 +1,62 @@
+import logging
+import io
+import base64
+import matplotlib.pyplot as plt
+from ..text_analysis.semantic_analysis import perform_semantic_analysis
+from .flexible_analysis_handler import FlexibleAnalysisHandler
+
+logger = logging.getLogger(__name__)
+
+def encode_image_to_base64(image_data):
+ if isinstance(image_data, str): # Si es una ruta de archivo
+ with open(image_data, "rb") as image_file:
+ encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
+ elif isinstance(image_data, bytes): # Si son datos de imagen en memoria
+ encoded_string = base64.b64encode(image_data).decode("utf-8")
+ else:
+ raise ValueError("Invalid image data type. Expected string (file path) or bytes.")
+ return encoded_string #
+
+def process_semantic_analysis(file_contents, nlp_model, lang_code):
+ logger.info(f"Starting semantic analysis processing for language: {lang_code}")
+ try:
+ result = perform_semantic_analysis(file_contents, nlp_model, lang_code)
+ #handler = FlexibleAnalysisHandler(result)
+
+ #concept_graph = handler.get_graph('concept_graph')
+ #entity_graph = handler.get_graph('entity_graph')
+ #key_concepts = handler.get_key_concepts()
+
+ concept_graph = result['concept_graph']
+ entity_graph = result['entity_graph']
+ key_concepts = result['key_concepts']
+
+ # Convertir los gráficos a base64
+ concept_graph_base64 = fig_to_base64(concept_graph) if concept_graph else None
+ entity_graph_base64 = fig_to_base64(entity_graph) if entity_graph else None
+
+ logger.info("Semantic analysis processing completed successfully")
+ return concept_graph_base64, entity_graph_base64, key_concepts
+ except Exception as e:
+ logger.error(f"Error in semantic analysis processing: {str(e)}")
+ return None, None, [] # Retorna valores vacíos en caso de error
+
+'''
+logger = logging.getLogger(__name__)
+logging.basicConfig(level=logging.DEBUG)
+
+def process_semantic_analysis(file_contents, nlp_model, lang_code):
+ logger.info(f"Starting semantic analysis for language: {lang_code}")
+ try:
+ logger.debug("Calling perform_semantic_analysis")
+ result = perform_semantic_analysis(file_contents, nlp_model, lang_code)
+ logger.debug(f"Result keys: {result.keys()}")
+ logger.debug(f"Type of concept_graph: {type(result['concept_graph'])}")
+ logger.debug(f"Type of entity_graph: {type(result['entity_graph'])}")
+ logger.debug(f"Number of key_concepts: {len(result['key_concepts'])}")
+ logger.info("Semantic analysis completed successfully")
+ return result['concept_graph'], result['entity_graph'], result['key_concepts']
+ except Exception as e:
+ logger.error(f"Error in semantic analysis: {str(e)}")
+ raise
+'''
\ No newline at end of file
diff --git a/modules/studentact/__pycache__/student_activities.cpython-311.pyc b/modules/studentact/__pycache__/student_activities.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6e2b820fda86da0621440ebd0d0aabd60e9e259d
Binary files /dev/null and b/modules/studentact/__pycache__/student_activities.cpython-311.pyc differ
diff --git a/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc b/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6b2ea707d57df5d3e7a4171dd1065ddf0c25bdd9
Binary files /dev/null and b/modules/studentact/__pycache__/student_activities_v2.cpython-311.pyc differ
diff --git a/modules/studentact/student_activities.py b/modules/studentact/student_activities.py
new file mode 100644
index 0000000000000000000000000000000000000000..1103fcd6e3d21d097845c1be5b161ecb6431d967
--- /dev/null
+++ b/modules/studentact/student_activities.py
@@ -0,0 +1,105 @@
+import streamlit as st
+import pandas as pd
+import matplotlib.pyplot as plt
+import seaborn as sns
+import base64
+from io import BytesIO
+from reportlab.pdfgen import canvas
+from reportlab.lib.pagesizes import letter
+from docx import Document
+from odf.opendocument import OpenDocumentText
+from odf.text import P
+from datetime import datetime, timedelta
+import pytz
+import logging
+
+# Configuración de logging
+logging.basicConfig(level=logging.DEBUG)
+logger = logging.getLogger(__name__)
+
+# Importaciones locales
+try:
+ from ..database.morphosintax_mongo_db import get_student_morphosyntax_data
+ from ..database.chat_db import get_chat_history
+ logger.info("Importaciones locales exitosas")
+except ImportError as e:
+ logger.error(f"Error en las importaciones locales: {e}")
+
+def display_student_progress(username, lang_code, t):
+ logger.debug(f"Iniciando display_student_progress para {username}")
+
+ st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
+
+ # Obtener los datos del estudiante
+ student_data = get_student_morphosyntax_data(username)
+
+ if not student_data or len(student_data.get('entries', [])) == 0:
+ logger.warning(f"No se encontraron datos para el estudiante {username}")
+ st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
+ st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
+ return
+
+ logger.debug(f"Datos del estudiante obtenidos: {len(student_data['entries'])} entradas")
+
+ # Resumen de actividades
+ with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True):
+ total_entries = len(student_data['entries'])
+ st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
+
+ # Gráfico de tipos de análisis
+ try:
+ analysis_types = [entry.get('analysis_type', 'unknown') for entry in student_data['entries']]
+ analysis_counts = pd.Series(analysis_types).value_counts()
+ fig, ax = plt.subplots()
+ sns.barplot(x=analysis_counts.index, y=analysis_counts.values, ax=ax)
+ ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
+ ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
+ ax.set_ylabel(t.get("count", "Cantidad"))
+ st.pyplot(fig)
+ except Exception as e:
+ logger.error(f"Error al crear el gráfico: {e}")
+ st.error("No se pudo crear el gráfico de tipos de análisis.")
+
+ # Función para generar el contenido del archivo de actividades de las últimas 48 horas
+ def generate_activity_content_48h():
+ content = f"Actividades de {username} en las últimas 48 horas\n\n"
+
+ two_days_ago = datetime.now(pytz.utc) - timedelta(days=2)
+
+ try:
+ morphosyntax_analyses = get_student_morphosyntax_data(username)
+ recent_morphosyntax = [a for a in morphosyntax_analyses if datetime.fromisoformat(a['timestamp']) > two_days_ago]
+
+ content += f"Análisis morfosintácticos: {len(recent_morphosyntax)}\n"
+ for analysis in recent_morphosyntax:
+ content += f"- Análisis del {analysis['timestamp']}: {analysis['text'][:50]}...\n"
+
+ chat_history = get_chat_history(username, None)
+ recent_chats = [c for c in chat_history if datetime.fromisoformat(c['timestamp']) > two_days_ago]
+
+ content += f"\nConversaciones de chat: {len(recent_chats)}\n"
+ for chat in recent_chats:
+ content += f"- Chat del {chat['timestamp']}: {len(chat['messages'])} mensajes\n"
+ except Exception as e:
+ logger.error(f"Error al generar el contenido de actividades: {e}")
+ content += "Error al recuperar los datos de actividades.\n"
+
+ return content
+
+ # Botones para descargar el histórico de actividades de las últimas 48 horas
+ st.subheader(t.get("download_history_48h", "Descargar Histórico de Actividades (Últimas 48 horas)"))
+ if st.button("Generar reporte de 48 horas"):
+ try:
+ report_content = generate_activity_content_48h()
+ st.text_area("Reporte de 48 horas", report_content, height=300)
+ st.download_button(
+ label="Descargar TXT (48h)",
+ data=report_content,
+ file_name="actividades_48h.txt",
+ mime="text/plain"
+ )
+ except Exception as e:
+ logger.error(f"Error al generar el reporte: {e}")
+ st.error("No se pudo generar el reporte. Por favor, verifica los logs para más detalles.")
+
+ logger.debug("Finalizando display_student_progress")
\ No newline at end of file
diff --git a/modules/studentact/student_activities_v2.py b/modules/studentact/student_activities_v2.py
new file mode 100644
index 0000000000000000000000000000000000000000..a2b3eb6913e28d7ad6e0eb71026980019f970202
--- /dev/null
+++ b/modules/studentact/student_activities_v2.py
@@ -0,0 +1,668 @@
+##############
+#########student_activities.py
+import streamlit as st
+import re
+import io
+from io import BytesIO
+import pandas as pd
+import numpy as np
+import time
+import matplotlib.pyplot as plt
+from datetime import datetime
+from spacy import displacy
+import random
+import base64
+import seaborn as sns
+import logging
+
+logger = logging.getLogger(__name__)
+
+###################################################################################
+
+def display_student_progress(username, lang_code, t, student_data):
+ if not student_data or len(student_data['entries']) == 0:
+ st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
+ st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
+ return
+
+ st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
+
+ with st.expander(t.get("activities_summary", "Resumen de Actividades y Progreso"), expanded=True):
+ total_entries = len(student_data['entries'])
+ st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
+
+ # Gráfico de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
+ analysis_counts = pd.Series(analysis_types).value_counts()
+
+ fig, ax = plt.subplots(figsize=(8, 4))
+ analysis_counts.plot(kind='bar', ax=ax)
+ ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
+ ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
+ ax.set_ylabel(t.get("count", "Cantidad"))
+ st.pyplot(fig)
+
+ # Histórico de Análisis Morfosintácticos
+ with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
+ morphosyntax_entries = [entry for entry in username['entries'] if entry['analysis_type'] == 'morphosyntax']
+ if not morphosyntax_entries:
+ st.warning("No se encontraron análisis morfosintácticos.")
+ for entry in morphosyntax_entries:
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ if 'arc_diagrams' in entry and entry['arc_diagrams']:
+ try:
+ st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
+ except Exception as e:
+ logger.error(f"Error al mostrar diagrama de arco: {str(e)}")
+ st.error("Error al mostrar el diagrama de arco.")
+ else:
+ st.write(t.get("no_arc_diagram", "No se encontró diagrama de arco para este análisis."))
+
+ # Histórico de Análisis Semánticos
+ with st.expander(t.get("semantic_history", "Histórico de Análisis Semánticos")):
+ semantic_entries = [entry for entry in username['entries'] if entry['analysis_type'] == 'semantic']
+ if not semantic_entries:
+ st.warning("No se encontraron análisis semánticos.")
+ for entry in semantic_entries:
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ if 'key_concepts' in entry:
+ st.write(t.get("key_concepts", "Conceptos clave:"))
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ if 'graph' in entry:
+ try:
+ img_bytes = base64.b64decode(entry['graph'])
+ st.image(img_bytes, caption=t.get("conceptual_relations_graph", "Gráfico de relaciones conceptuales"))
+ except Exception as e:
+ logger.error(f"Error al mostrar gráfico semántico: {str(e)}")
+ st.error(t.get("graph_display_error", f"No se pudo mostrar el gráfico: {str(e)}"))
+
+ # Histórico de Análisis Discursivos
+ with st.expander(t.get("discourse_history", "Histórico de Análisis Discursivos")):
+ discourse_entries = [entry for entry in username['entries'] if entry['analysis_type'] == 'discourse']
+ for entry in discourse_entries:
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ for i in [1, 2]:
+ if f'key_concepts{i}' in entry:
+ st.write(f"{t.get('key_concepts', 'Conceptos clave')} {t.get('document', 'documento')} {i}:")
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry[f'key_concepts{i}']])
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ try:
+ if 'combined_graph' in entry and entry['combined_graph']:
+ img_bytes = base64.b64decode(entry['combined_graph'])
+ st.image(img_bytes, caption=t.get("combined_graph", "Gráfico combinado"))
+ elif 'graph1' in entry and 'graph2' in entry:
+ col1, col2 = st.columns(2)
+ with col1:
+ if entry['graph1']:
+ img_bytes1 = base64.b64decode(entry['graph1'])
+ st.image(img_bytes1, caption=t.get("graph_doc1", "Gráfico documento 1"))
+ with col2:
+ if entry['graph2']:
+ img_bytes2 = base64.b64decode(entry['graph2'])
+ st.image(img_bytes2, caption=t.get("graph_doc2", "Gráfico documento 2"))
+ except Exception as e:
+ st.error(t.get("graph_display_error", f"No se pudieron mostrar los gráficos: {str(e)}"))
+
+ # Histórico de Conversaciones con el ChatBot
+ with st.expander(t.get("chatbot_history", "Histórico de Conversaciones con el ChatBot")):
+ if 'chat_history' in username and username['chat_history']:
+ for i, chat in enumerate(username['chat_history']):
+ st.subheader(f"{t.get('conversation', 'Conversación')} {i+1} - {chat['timestamp']}")
+ for message in chat['messages']:
+ if message['role'] == 'user':
+ st.write(f"{t.get('user', 'Usuario')}: {message['content']}")
+ else:
+ st.write(f"{t.get('assistant', 'Asistente')}: {message['content']}")
+ st.write("---")
+ else:
+ st.write(t.get("no_chat_history", "No se encontraron conversaciones con el ChatBot."))
+
+ # Añadir logs para depuración
+ if st.checkbox(t.get("show_debug_data", "Mostrar datos de depuración")):
+ st.write(t.get("student_debug_data", "Datos del estudiante (para depuración):"))
+ st.json(username)
+
+ # Mostrar conteo de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in username['entries']]
+ type_counts = {t: analysis_types.count(t) for t in set(analysis_types)}
+ st.write("Conteo de tipos de análisis:")
+ st.write(type_counts)
+
+
+
+
+'''
+##########versión 25-9-2024---02:30 ################ OK (username)####################
+
+def display_student_progress(username, lang_code, t, student_data):
+ st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
+
+ if not student_data or len(student_data.get('entries', [])) == 0:
+ st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
+ st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
+ return
+
+ with st.expander(t.get("activities_summary", "Resumen de Actividades"), expanded=True):
+ total_entries = len(student_data['entries'])
+ st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
+
+ # Gráfico de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
+ analysis_counts = pd.Series(analysis_types).value_counts()
+ fig, ax = plt.subplots()
+ analysis_counts.plot(kind='bar', ax=ax)
+ ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
+ ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
+ ax.set_ylabel(t.get("count", "Cantidad"))
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis morfosintácticos
+ with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
+ morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
+ for entry in morphosyntax_entries[:5]: # Mostrar los últimos 5
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ if 'arc_diagrams' in entry and entry['arc_diagrams']:
+ st.components.v1.html(entry['arc_diagrams'][0], height=300, scrolling=True)
+
+ # Añadir secciones similares para análisis semánticos y discursivos si es necesario
+
+ # Mostrar el historial de chat
+ with st.expander(t.get("chat_history", "Historial de Chat")):
+ if 'chat_history' in student_data:
+ for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t.get('chat_from', 'Chat del')} {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+ else:
+ st.write(t.get("no_chat_history", "No hay historial de chat disponible."))
+
+
+##########versión 24-9-2024---17:30 ################ OK FROM--V2 de def get_student_data(username)####################
+
+def display_student_progress(username, lang_code, t, student_data):
+ if not student_data or len(student_data['entries']) == 0:
+ st.warning(t.get("no_data_warning", "No se encontraron datos para este estudiante."))
+ st.info(t.get("try_analysis", "Intenta realizar algunos análisis de texto primero."))
+ return
+
+ st.title(f"{t.get('progress_of', 'Progreso de')} {username}")
+
+ with st.expander(t.get("activities_summary", "Resumen de Actividades y Progreso"), expanded=True):
+ total_entries = len(student_data['entries'])
+ st.write(f"{t.get('total_analyses', 'Total de análisis realizados')}: {total_entries}")
+
+ # Gráfico de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
+ analysis_counts = pd.Series(analysis_types).value_counts()
+
+ fig, ax = plt.subplots(figsize=(8, 4))
+ analysis_counts.plot(kind='bar', ax=ax)
+ ax.set_title(t.get("analysis_types_chart", "Tipos de análisis realizados"))
+ ax.set_xlabel(t.get("analysis_type", "Tipo de análisis"))
+ ax.set_ylabel(t.get("count", "Cantidad"))
+ st.pyplot(fig)
+
+ # Histórico de Análisis Morfosintácticos
+ with st.expander(t.get("morphosyntax_history", "Histórico de Análisis Morfosintácticos")):
+ morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
+ if not morphosyntax_entries:
+ st.warning("No se encontraron análisis morfosintácticos.")
+ for entry in morphosyntax_entries:
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ if 'arc_diagrams' in entry and entry['arc_diagrams']:
+ try:
+ st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
+ except Exception as e:
+ logger.error(f"Error al mostrar diagrama de arco: {str(e)}")
+ st.error("Error al mostrar el diagrama de arco.")
+ else:
+ st.write(t.get("no_arc_diagram", "No se encontró diagrama de arco para este análisis."))
+
+ # Histórico de Análisis Semánticos
+ with st.expander(t.get("semantic_history", "Histórico de Análisis Semánticos")):
+ semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
+ if not semantic_entries:
+ st.warning("No se encontraron análisis semánticos.")
+ for entry in semantic_entries:
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ if 'key_concepts' in entry:
+ st.write(t.get("key_concepts", "Conceptos clave:"))
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ if 'graph' in entry:
+ try:
+ img_bytes = base64.b64decode(entry['graph'])
+ st.image(img_bytes, caption=t.get("conceptual_relations_graph", "Gráfico de relaciones conceptuales"))
+ except Exception as e:
+ logger.error(f"Error al mostrar gráfico semántico: {str(e)}")
+ st.error(t.get("graph_display_error", f"No se pudo mostrar el gráfico: {str(e)}"))
+
+ # Histórico de Análisis Discursivos
+ with st.expander(t.get("discourse_history", "Histórico de Análisis Discursivos")):
+ discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
+ for entry in discourse_entries:
+ st.subheader(f"{t.get('analysis_of', 'Análisis del')} {entry['timestamp']}")
+ for i in [1, 2]:
+ if f'key_concepts{i}' in entry:
+ st.write(f"{t.get('key_concepts', 'Conceptos clave')} {t.get('document', 'documento')} {i}:")
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry[f'key_concepts{i}']])
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ try:
+ if 'combined_graph' in entry and entry['combined_graph']:
+ img_bytes = base64.b64decode(entry['combined_graph'])
+ st.image(img_bytes, caption=t.get("combined_graph", "Gráfico combinado"))
+ elif 'graph1' in entry and 'graph2' in entry:
+ col1, col2 = st.columns(2)
+ with col1:
+ if entry['graph1']:
+ img_bytes1 = base64.b64decode(entry['graph1'])
+ st.image(img_bytes1, caption=t.get("graph_doc1", "Gráfico documento 1"))
+ with col2:
+ if entry['graph2']:
+ img_bytes2 = base64.b64decode(entry['graph2'])
+ st.image(img_bytes2, caption=t.get("graph_doc2", "Gráfico documento 2"))
+ except Exception as e:
+ st.error(t.get("graph_display_error", f"No se pudieron mostrar los gráficos: {str(e)}"))
+
+ # Histórico de Conversaciones con el ChatBot
+ with st.expander(t.get("chatbot_history", "Histórico de Conversaciones con el ChatBot")):
+ if 'chat_history' in student_data and student_data['chat_history']:
+ for i, chat in enumerate(student_data['chat_history']):
+ st.subheader(f"{t.get('conversation', 'Conversación')} {i+1} - {chat['timestamp']}")
+ for message in chat['messages']:
+ if message['role'] == 'user':
+ st.write(f"{t.get('user', 'Usuario')}: {message['content']}")
+ else:
+ st.write(f"{t.get('assistant', 'Asistente')}: {message['content']}")
+ st.write("---")
+ else:
+ st.write(t.get("no_chat_history", "No se encontraron conversaciones con el ChatBot."))
+
+ # Añadir logs para depuración
+ if st.checkbox(t.get("show_debug_data", "Mostrar datos de depuración")):
+ st.write(t.get("student_debug_data", "Datos del estudiante (para depuración):"))
+ st.json(student_data)
+
+ # Mostrar conteo de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
+ type_counts = {t: analysis_types.count(t) for t in set(analysis_types)}
+ st.write("Conteo de tipos de análisis:")
+ st.write(type_counts)
+
+
+#############################--- Update 16:00 24-9 #########################################
+def display_student_progress(username, lang_code, t, student_data):
+ try:
+ st.subheader(t.get('student_activities', 'Student Activitie'))
+
+ if not student_data or all(len(student_data.get(key, [])) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
+ st.warning(t.get('no_data_warning', 'No analysis data found for this student.'))
+ return
+
+ # Resumen de actividades
+ total_analyses = sum(len(student_data.get(key, [])) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
+ st.write(f"{t.get('total_analyses', 'Total analyses performed')}: {total_analyses}")
+
+ # Gráfico de tipos de análisis
+ analysis_counts = {
+ t.get('morpho_analyses', 'Morphosyntactic Analyses'): len(student_data.get('morphosyntax_analyses', [])),
+ t.get('semantic_analyses', 'Semantic Analyses'): len(student_data.get('semantic_analyses', [])),
+ t.get('discourse_analyses', 'Discourse Analyses'): len(student_data.get('discourse_analyses', []))
+ }
+ # Configurar el estilo de seaborn para un aspecto más atractivo
+ sns.set_style("whitegrid")
+
+ # Crear una figura más pequeña
+ fig, ax = plt.subplots(figsize=(6, 4))
+
+ # Usar colores más atractivos
+ colors = ['#ff9999', '#66b3ff', '#99ff99']
+
+ # Crear el gráfico de barras
+ bars = ax.bar(analysis_counts.keys(), analysis_counts.values(), color=colors)
+
+ # Añadir etiquetas de valor encima de cada barra
+ for bar in bars:
+ height = bar.get_height()
+ ax.text(bar.get_x() + bar.get_width()/2., height,
+ f'{height}',
+ ha='center', va='bottom')
+
+ # Configurar el título y las etiquetas
+ ax.set_title(t.get('analysis_types_chart', 'Types of analyses performed'), fontsize=12)
+ ax.set_ylabel(t.get('count', 'Count'), fontsize=10)
+
+ # Rotar las etiquetas del eje x para mejor legibilidad
+ plt.xticks(rotation=45, ha='right')
+
+ # Ajustar el diseño para que todo quepa
+ plt.tight_layout()
+
+ # Mostrar el gráfico en Streamlit
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis
+ for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
+ with st.expander(t.get(f'{analysis_type}_expander', f'{analysis_type.capitalize()} History')):
+ for analysis in student_data.get(analysis_type, [])[:5]: # Mostrar los últimos 5
+ st.subheader(f"{t.get('analysis_from', 'Analysis from')} {analysis.get('timestamp', 'N/A')}")
+ if analysis_type == 'morphosyntax_analyses':
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+ elif analysis_type == 'semantic_analyses':
+ if 'key_concepts' in analysis:
+ st.write(t.get('key_concepts', 'Key concepts'))
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
+ if 'graph' in analysis:
+ st.image(base64.b64decode(analysis['graph']))
+ elif analysis_type == 'discourse_analyses':
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ st.write(f"{t.get('key_concepts', 'Key concepts')} {t.get('document', 'Document')} {i}")
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
+ if 'combined_graph' in analysis:
+ st.image(base64.b64decode(analysis['combined_graph']))
+
+ # Mostrar el historial de chat
+ with st.expander(t.get('chat_history_expander', 'Chat History')):
+ for chat in student_data.get('chat_history', [])[:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t.get('chat_from', 'Chat from')} {chat.get('timestamp', 'N/A')}")
+ for message in chat.get('messages', []):
+ st.write(f"{message.get('role', 'Unknown').capitalize()}: {message.get('content', 'No content')}")
+ st.write("---")
+
+ except Exception as e:
+ logger.error(f"Error in display_student_progress: {str(e)}", exc_info=True)
+ st.error(t.get('error_loading_progress', 'Error loading student progress. Please try again later.'))
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+#####################################################################
+def display_student_progress(username, lang_code, t, student_data):
+ st.subheader(t['student_progress'])
+
+ if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
+ st.warning(t['no_data_warning'])
+ return
+
+ # Resumen de actividades
+ total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
+ st.write(f"{t['total_analyses']}: {total_analyses}")
+
+ # Gráfico de tipos de análisis
+ analysis_counts = {
+ t['morpho_analyses']: len(student_data['morphosyntax_analyses']),
+ t['semantic_analyses']: len(student_data['semantic_analyses']),
+ t['discourse_analyses']: len(student_data['discourse_analyses'])
+ }
+ fig, ax = plt.subplots()
+ ax.bar(analysis_counts.keys(), analysis_counts.values())
+ ax.set_title(t['analysis_types_chart'])
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis
+ for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
+ with st.expander(t[f'{analysis_type}_expander']):
+ for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
+ st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
+ if analysis_type == 'morphosyntax_analyses':
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+ elif analysis_type == 'semantic_analyses':
+ if 'key_concepts' in analysis:
+ st.write(t['key_concepts'])
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
+ if 'graph' in analysis:
+ st.image(base64.b64decode(analysis['graph']))
+ elif analysis_type == 'discourse_analyses':
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ st.write(f"{t['key_concepts']} {t['document']} {i}")
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
+ if 'combined_graph' in analysis:
+ st.image(base64.b64decode(analysis['combined_graph']))
+
+ # Mostrar el historial de chat
+ with st.expander(t['chat_history_expander']):
+ for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t['chat_from']} {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+
+
+
+def display_student_progress(username, lang_code, t, student_data):
+ st.subheader(t['student_activities'])
+
+ if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
+ st.warning(t['no_data_warning'])
+ return
+
+ # Resumen de actividades
+ total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
+ st.write(f"{t['total_analyses']}: {total_analyses}")
+
+ # Gráfico de tipos de análisis
+ analysis_counts = {
+ t['morphological_analysis']: len(student_data['morphosyntax_analyses']),
+ t['semantic_analyses']: len(student_data['semantic_analyses']),
+ t['discourse_analyses']: len(student_data['discourse_analyses'])
+ }
+ fig, ax = plt.subplots()
+ ax.bar(analysis_counts.keys(), analysis_counts.values())
+ ax.set_title(t['analysis_types_chart'])
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis
+ for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
+ with st.expander(t[f'{analysis_type}_expander']):
+ for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
+ st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
+ if analysis_type == 'morphosyntax_analyses':
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+ elif analysis_type == 'semantic_analyses':
+ if 'key_concepts' in analysis:
+ st.write(t['key_concepts'])
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
+ if 'graph' in analysis:
+ st.image(base64.b64decode(analysis['graph']))
+ elif analysis_type == 'discourse_analyses':
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ st.write(f"{t['key_concepts']} {t['document']} {i}")
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
+ if 'combined_graph' in analysis:
+ st.image(base64.b64decode(analysis['combined_graph']))
+
+ # Mostrar el historial de chat
+ with st.expander(t['chat_history_expander']):
+ for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t['chat_from']} {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+
+
+
+
+def display_student_progress(username, lang_code, t, student_data):
+ st.subheader(t['student_activities'])
+
+ if not student_data or all(len(student_data[key]) == 0 for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']):
+ st.warning(t['no_data_warning'])
+ return
+
+ # Resumen de actividades
+ total_analyses = sum(len(student_data[key]) for key in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses'])
+ st.write(f"{t['total_analyses']}: {total_analyses}")
+
+ # Gráfico de tipos de análisis
+ analysis_counts = {
+ t['morphological_analysis']: len(student_data['morphosyntax_analyses']),
+ t['semantic_analyses']: len(student_data['semantic_analyses']),
+ t['discourse_analyses']: len(student_data['discourse_analyses'])
+ }
+ fig, ax = plt.subplots()
+ ax.bar(analysis_counts.keys(), analysis_counts.values())
+ ax.set_title(t['analysis_types_chart'])
+ st.pyplot(fig)
+
+ # Mostrar los últimos análisis
+ for analysis_type in ['morphosyntax_analyses', 'semantic_analyses', 'discourse_analyses']:
+ with st.expander(t[f'{analysis_type}_expander']):
+ for analysis in student_data[analysis_type][:5]: # Mostrar los últimos 5
+ st.subheader(f"{t['analysis_from']} {analysis['timestamp']}")
+ if analysis_type == 'morphosyntax_analyses':
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+ elif analysis_type == 'semantic_analyses':
+ if 'key_concepts' in analysis:
+ st.write(t['key_concepts'])
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis['key_concepts']]))
+ if 'graph' in analysis:
+ st.image(base64.b64decode(analysis['graph']))
+ elif analysis_type == 'discourse_analyses':
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ st.write(f"{t['key_concepts']} {t['document']} {i}")
+ st.write(", ".join([f"{concept} ({freq:.2f})" for concept, freq in analysis[f'key_concepts{i}']]))
+ if 'combined_graph' in analysis:
+ st.image(base64.b64decode(analysis['combined_graph']))
+
+ # Mostrar el historial de chat
+ with st.expander(t['chat_history_expander']):
+ for chat in student_data['chat_history'][:5]: # Mostrar las últimas 5 conversaciones
+ st.subheader(f"{t['chat_from']} {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+
+
+
+
+def display_student_progress(username, lang_code, t):
+ st.subheader(t['student_activities'])
+ st.write(f"{t['activities_message']} {username}")
+
+ # Aquí puedes agregar más contenido estático o placeholder
+ st.info(t['activities_placeholder'])
+
+ # Si necesitas mostrar algún dato, puedes usar datos de ejemplo o placeholders
+ col1, col2, col3 = st.columns(3)
+ col1.metric(t['morpho_analyses'], "5") # Ejemplo de dato
+ col2.metric(t['semantic_analyses'], "3") # Ejemplo de dato
+ col3.metric(t['discourse_analyses'], "2") # Ejemplo de dato
+
+
+
+def display_student_progress(username, lang_code, t):
+ st.title(f"Actividades de {username}")
+
+ # Obtener todos los datos del estudiante
+ student_data = get_student_data(username)
+
+ if not student_data or len(student_data.get('entries', [])) == 0:
+ st.warning("No se encontraron datos de análisis para este estudiante.")
+ st.info("Intenta realizar algunos análisis de texto primero.")
+ return
+
+ # Resumen de actividades
+ with st.expander("Resumen de Actividades", expanded=True):
+ total_entries = len(student_data['entries'])
+ st.write(f"Total de análisis realizados: {total_entries}")
+
+ # Gráfico de tipos de análisis
+ analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
+ analysis_counts = pd.Series(analysis_types).value_counts()
+ fig, ax = plt.subplots()
+ analysis_counts.plot(kind='bar', ax=ax)
+ ax.set_title("Tipos de análisis realizados")
+ ax.set_xlabel("Tipo de análisis")
+ ax.set_ylabel("Cantidad")
+ st.pyplot(fig)
+
+ # Histórico de Análisis Morfosintácticos
+ with st.expander("Histórico de Análisis Morfosintácticos"):
+ morpho_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
+ for analysis in morpho_analyses[:5]: # Mostrar los últimos 5
+ st.subheader(f"Análisis del {analysis['timestamp']}")
+ if 'arc_diagrams' in analysis:
+ st.write(analysis['arc_diagrams'][0], unsafe_allow_html=True)
+
+ # Histórico de Análisis Semánticos
+ with st.expander("Histórico de Análisis Semánticos"):
+ semantic_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
+ for analysis in semantic_analyses[:5]: # Mostrar los últimos 5
+ st.subheader(f"Análisis del {analysis['timestamp']}")
+ if 'key_concepts' in analysis:
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts']])
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ if 'graph' in analysis:
+ try:
+ img_bytes = base64.b64decode(analysis['graph'])
+ st.image(img_bytes, caption="Gráfico de relaciones conceptuales")
+ except Exception as e:
+ st.error(f"No se pudo mostrar el gráfico: {str(e)}")
+
+ # Histórico de Análisis Discursivos
+ with st.expander("Histórico de Análisis Discursivos"):
+ discourse_analyses = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
+ for analysis in discourse_analyses[:5]: # Mostrar los últimos 5
+ st.subheader(f"Análisis del {analysis['timestamp']}")
+ for i in [1, 2]:
+ if f'key_concepts{i}' in analysis:
+ concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in analysis[f'key_concepts{i}']])
+ st.write(f"Conceptos clave del documento {i}:")
+ st.markdown(f"{concepts_str}
", unsafe_allow_html=True)
+ if 'combined_graph' in analysis:
+ try:
+ img_bytes = base64.b64decode(analysis['combined_graph'])
+ st.image(img_bytes)
+ except Exception as e:
+ st.error(f"No se pudo mostrar el gráfico combinado: {str(e)}")
+
+ # Histórico de Conversaciones con el ChatBot
+ with st.expander("Histórico de Conversaciones con el ChatBot"):
+ if 'chat_history' in student_data:
+ for i, chat in enumerate(student_data['chat_history'][:5]): # Mostrar las últimas 5 conversaciones
+ st.subheader(f"Conversación {i+1} - {chat['timestamp']}")
+ for message in chat['messages']:
+ st.write(f"{message['role'].capitalize()}: {message['content']}")
+ st.write("---")
+ else:
+ st.write("No se encontraron conversaciones con el ChatBot.")
+
+ # Opción para mostrar datos de depuración
+ if st.checkbox("Mostrar datos de depuración"):
+ st.write("Datos del estudiante (para depuración):")
+ st.json(student_data)
+
+'''
\ No newline at end of file
diff --git a/modules/text_analysis/__init__.py b/modules/text_analysis/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/modules/text_analysis/__pycache__/__init__.cpython-311.pyc b/modules/text_analysis/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e7768ec60cb4a06cdaec79228f7036c906df7b0
Binary files /dev/null and b/modules/text_analysis/__pycache__/__init__.cpython-311.pyc differ
diff --git a/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc b/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5f526ab04a41ca07b198c4e4aaf1337b595c5f33
Binary files /dev/null and b/modules/text_analysis/__pycache__/discourse_analysis.cpython-311.pyc differ
diff --git a/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc b/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d74855a63b98e328d11eb2b08352b26f31a23655
Binary files /dev/null and b/modules/text_analysis/__pycache__/morpho_analysis.cpython-311.pyc differ
diff --git a/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc b/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..53c63e092b99349668b992be27100905c36bb707
Binary files /dev/null and b/modules/text_analysis/__pycache__/semantic_analysis.cpython-311.pyc differ
diff --git a/modules/text_analysis/coherence_analysis.py b/modules/text_analysis/coherence_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..d3f5a12faa99758192ecc4ed3fc22c9249232e86
--- /dev/null
+++ b/modules/text_analysis/coherence_analysis.py
@@ -0,0 +1 @@
+
diff --git a/modules/text_analysis/complex_structures.py b/modules/text_analysis/complex_structures.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/modules/text_analysis/discourse_analysis.py b/modules/text_analysis/discourse_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1e19717a070b495c8e26314aeb2e4501b5c8fdb
--- /dev/null
+++ b/modules/text_analysis/discourse_analysis.py
@@ -0,0 +1,72 @@
+import streamlit as st
+import spacy
+import networkx as nx
+import matplotlib.pyplot as plt
+import pandas as pd
+import numpy as np
+from .semantic_analysis import (
+ create_concept_graph,
+ visualize_concept_graph,
+ identify_key_concepts,
+ POS_COLORS,
+ POS_TRANSLATIONS,
+ ENTITY_LABELS
+)
+
+def compare_semantic_analysis(text1, text2, nlp, lang):
+ doc1 = nlp(text1)
+ doc2 = nlp(text2)
+
+ # Identificar conceptos clave para ambos documentos
+ key_concepts1 = identify_key_concepts(doc1)
+ key_concepts2 = identify_key_concepts(doc2)
+
+ # Crear grafos de conceptos para ambos documentos
+ G1 = create_concept_graph(doc1, key_concepts1)
+ G2 = create_concept_graph(doc2, key_concepts2)
+
+ # Visualizar los grafos de conceptos
+ fig1 = visualize_concept_graph(G1, lang)
+ fig2 = visualize_concept_graph(G2, lang)
+
+ # Remover los títulos superpuestos
+ fig1.suptitle("")
+ fig2.suptitle("")
+
+ return fig1, fig2, key_concepts1, key_concepts2
+
+def create_concept_table(key_concepts):
+ df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
+ df['Frecuencia'] = df['Frecuencia'].round(2)
+ return df
+
+def perform_discourse_analysis(text1, text2, nlp, lang):
+ graph1, graph2, key_concepts1, key_concepts2 = compare_semantic_analysis(text1, text2, nlp, lang)
+
+ # Crear tablas de conceptos clave
+ table1 = create_concept_table(key_concepts1)
+ table2 = create_concept_table(key_concepts2)
+
+ return {
+ 'graph1': graph1,
+ 'graph2': graph2,
+ 'key_concepts1': key_concepts1,
+ 'key_concepts2': key_concepts2
+ }
+
+def display_discourse_analysis_results(analysis_result, lang_code):
+ t = get_translations(lang_code)
+
+ col1, col2 = st.columns(2)
+
+ with col1:
+ with st.expander(t['doc1_title'], expanded=True):
+ st.pyplot(analysis_result['graph1'])
+ st.subheader(t['key_concepts'])
+ st.table(analysis_result['table1'])
+
+ with col2:
+ with st.expander(t['doc2_title'], expanded=True):
+ st.pyplot(analysis_result['graph2'])
+ st.subheader(t['key_concepts'])
+ st.table(analysis_result['table2'])
\ No newline at end of file
diff --git a/modules/text_analysis/entity_analysis.py b/modules/text_analysis/entity_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/modules/text_analysis/idiom_detection.py b/modules/text_analysis/idiom_detection.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/modules/text_analysis/intertextual_analysis.py b/modules/text_analysis/intertextual_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py b/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py
new file mode 100644
index 0000000000000000000000000000000000000000..7a0823063d965ac2ca3715fc1484046dd8be39a6
--- /dev/null
+++ b/modules/text_analysis/morpho_analysis-Back1910-25-9-24.py
@@ -0,0 +1,253 @@
+import spacy
+from spacy import displacy
+from streamlit.components.v1 import html
+import base64
+
+from collections import Counter
+import re
+from ..utils.widget_utils import generate_unique_key
+
+import logging
+logger = logging.getLogger(__name__)
+
+
+# Define colors for grammatical categories
+POS_COLORS = {
+ 'ADJ': '#FFA07A', # Light Salmon
+ 'ADP': '#98FB98', # Pale Green
+ 'ADV': '#87CEFA', # Light Sky Blue
+ 'AUX': '#DDA0DD', # Plum
+ 'CCONJ': '#F0E68C', # Khaki
+ 'DET': '#FFB6C1', # Light Pink
+ 'INTJ': '#FF6347', # Tomato
+ 'NOUN': '#90EE90', # Light Green
+ 'NUM': '#FAFAD2', # Light Goldenrod Yellow
+ 'PART': '#D3D3D3', # Light Gray
+ 'PRON': '#FFA500', # Orange
+ 'PROPN': '#20B2AA', # Light Sea Green
+ 'SCONJ': '#DEB887', # Burlywood
+ 'SYM': '#7B68EE', # Medium Slate Blue
+ 'VERB': '#FF69B4', # Hot Pink
+ 'X': '#A9A9A9', # Dark Gray
+}
+
+POS_TRANSLATIONS = {
+ 'es': {
+ 'ADJ': 'Adjetivo',
+ 'ADP': 'Preposición',
+ 'ADV': 'Adverbio',
+ 'AUX': 'Auxiliar',
+ 'CCONJ': 'Conjunción Coordinante',
+ 'DET': 'Determinante',
+ 'INTJ': 'Interjección',
+ 'NOUN': 'Sustantivo',
+ 'NUM': 'Número',
+ 'PART': 'Partícula',
+ 'PRON': 'Pronombre',
+ 'PROPN': 'Nombre Propio',
+ 'SCONJ': 'Conjunción Subordinante',
+ 'SYM': 'Símbolo',
+ 'VERB': 'Verbo',
+ 'X': 'Otro',
+ },
+ 'en': {
+ 'ADJ': 'Adjective',
+ 'ADP': 'Preposition',
+ 'ADV': 'Adverb',
+ 'AUX': 'Auxiliary',
+ 'CCONJ': 'Coordinating Conjunction',
+ 'DET': 'Determiner',
+ 'INTJ': 'Interjection',
+ 'NOUN': 'Noun',
+ 'NUM': 'Number',
+ 'PART': 'Particle',
+ 'PRON': 'Pronoun',
+ 'PROPN': 'Proper Noun',
+ 'SCONJ': 'Subordinating Conjunction',
+ 'SYM': 'Symbol',
+ 'VERB': 'Verb',
+ 'X': 'Other',
+ },
+ 'fr': {
+ 'ADJ': 'Adjectif',
+ 'ADP': 'Préposition',
+ 'ADV': 'Adverbe',
+ 'AUX': 'Auxiliaire',
+ 'CCONJ': 'Conjonction de Coordination',
+ 'DET': 'Déterminant',
+ 'INTJ': 'Interjection',
+ 'NOUN': 'Nom',
+ 'NUM': 'Nombre',
+ 'PART': 'Particule',
+ 'PRON': 'Pronom',
+ 'PROPN': 'Nom Propre',
+ 'SCONJ': 'Conjonction de Subordination',
+ 'SYM': 'Symbole',
+ 'VERB': 'Verbe',
+ 'X': 'Autre',
+ }
+}
+
+def generate_arc_diagram(doc):
+ arc_diagrams = []
+ for sent in doc.sents:
+ words = [token.text for token in sent]
+ # Calculamos el ancho del SVG basado en la longitud de la oración
+ svg_width = max(100, len(words) * 120)
+ # Altura fija para cada oración
+ svg_height = 300 # Controla la altura del SVG
+
+ # Renderizamos el diagrama de dependencias
+ html = displacy.render(sent, style="dep", options={
+ "add_lemma":False, # Introduced in version 2.2.4, this argument prints the lemma’s in a separate row below the token texts.
+ "arrow_spacing": 12, #This argument is used for adjusting the spacing between arrows in px to avoid overlaps.
+ "arrow_width": 2, #This argument is used for adjusting the width of arrow head in px.
+ "arrow_stroke": 2, #This argument is used for adjusting the width of arrow path in px.
+ "collapse_punct": True, #It attaches punctuation to the tokens.
+ "collapse_phrases": False, # This argument merges the noun phrases into one token.
+ "compact":False, # If you will take this argument as true, you will get the “Compact mode” with square arrows that takes up less space.
+ "color": "#ffffff",
+ "bg": "#0d6efd",
+ "compact": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
+ "distance": 100, # Aumentamos la distancia entre palabras
+ "fine_grained": False, #Put the value of this argument True, if you want to use fine-grained part-of-speech tags (Token.tag_), instead of coarse-grained tags (Token.pos_).
+ "offset_x": 0, # This argument is used for spacing on left side of the SVG in px.
+ "word_spacing": 25, #This argument is used for adjusting the vertical spacing between words and arcs in px.
+ })
+
+ # Ajustamos el tamaño del SVG y el viewBox
+ html = re.sub(r'width="(\d+)"', f'width="{svg_width}"', html)
+ html = re.sub(r'height="(\d+)"', f'height="{svg_height}"', html)
+ html = re.sub(r'