Update modules/text_analysis/semantic_analysis.py
Browse files
modules/text_analysis/semantic_analysis.py
CHANGED
@@ -1,19 +1,27 @@
|
|
1 |
# modules/text_analysis/semantic_analysis.py
|
2 |
-
# [Mantener todas las importaciones y constantes existentes...]
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import streamlit as st
|
5 |
import spacy
|
6 |
import networkx as nx
|
7 |
import matplotlib.pyplot as plt
|
8 |
-
import io
|
9 |
-
import base64
|
10 |
-
from collections import Counter, defaultdict
|
11 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
from sklearn.metrics.pairwise import cosine_similarity
|
13 |
|
14 |
-
|
15 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
16 |
|
|
|
17 |
from .stopwords import (
|
18 |
process_text,
|
19 |
get_custom_stopwords,
|
@@ -77,15 +85,21 @@ ENTITY_LABELS = {
|
|
77 |
}
|
78 |
}
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def perform_semantic_analysis(text, nlp, lang_code):
|
81 |
"""
|
82 |
Realiza el análisis semántico completo del texto.
|
83 |
-
Args:
|
84 |
-
text: Texto a analizar
|
85 |
-
nlp: Modelo de spaCy
|
86 |
-
lang_code: Código del idioma
|
87 |
-
Returns:
|
88 |
-
dict: Resultados del análisis
|
89 |
"""
|
90 |
try:
|
91 |
logger.info(f"Starting semantic analysis for language: {lang_code}")
|
@@ -95,28 +109,58 @@ def perform_semantic_analysis(text, nlp, lang_code):
|
|
95 |
tokens = process_text(text, lang_code, nlp)
|
96 |
|
97 |
# Identificar conceptos clave
|
98 |
-
|
|
|
|
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
concept_graph = create_concept_graph(doc, key_concepts)
|
|
|
|
|
|
|
|
|
102 |
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
|
103 |
-
|
104 |
-
# Convertir
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return {
|
109 |
'success': True,
|
110 |
'key_concepts': key_concepts,
|
111 |
-
'concept_graph':
|
112 |
}
|
|
|
113 |
except Exception as e:
|
114 |
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
|
|
|
115 |
return {
|
116 |
'success': False,
|
117 |
'error': str(e)
|
118 |
}
|
119 |
|
|
|
|
|
120 |
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
121 |
"""
|
122 |
Identifica conceptos clave en el texto.
|
@@ -144,20 +188,7 @@ def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
|
144 |
logger.error(f"Error en identify_key_concepts: {str(e)}")
|
145 |
return []
|
146 |
|
147 |
-
|
148 |
-
buf = io.BytesIO()
|
149 |
-
fig.savefig(buf, format='png')
|
150 |
-
buf.seek(0)
|
151 |
-
return buf.getvalue()
|
152 |
-
|
153 |
-
|
154 |
-
def fig_to_html(fig):
|
155 |
-
buf = io.BytesIO()
|
156 |
-
fig.savefig(buf, format='png')
|
157 |
-
buf.seek(0)
|
158 |
-
img_str = base64.b64encode(buf.getvalue()).decode()
|
159 |
-
return f'<img src="data:image/png;base64,{img_str}" />'
|
160 |
-
|
161 |
def create_concept_graph(doc, key_concepts):
|
162 |
"""
|
163 |
Crea un grafo de relaciones entre conceptos.
|
@@ -203,26 +234,27 @@ def create_concept_graph(doc, key_concepts):
|
|
203 |
# Retornar un grafo vacío en caso de error
|
204 |
return nx.Graph()
|
205 |
|
|
|
206 |
def visualize_concept_graph(G, lang_code):
|
207 |
"""
|
208 |
Visualiza el grafo de conceptos.
|
209 |
-
Args:
|
210 |
-
G: Grafo de networkx
|
211 |
-
lang_code: Código del idioma
|
212 |
-
Returns:
|
213 |
-
matplotlib.figure.Figure: Figura con el grafo visualizado
|
214 |
"""
|
215 |
try:
|
216 |
-
|
|
|
217 |
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
220 |
|
221 |
-
# Obtener pesos
|
222 |
node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()]
|
223 |
edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
|
224 |
|
225 |
-
# Dibujar
|
226 |
nx.draw_networkx_nodes(G, pos,
|
227 |
node_size=node_weights,
|
228 |
node_color='lightblue',
|
@@ -240,13 +272,14 @@ def visualize_concept_graph(G, lang_code):
|
|
240 |
plt.title("Red de conceptos relacionados")
|
241 |
plt.axis('off')
|
242 |
|
243 |
-
return
|
244 |
|
245 |
except Exception as e:
|
246 |
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
247 |
-
# Retornar
|
248 |
-
return plt.figure()
|
249 |
|
|
|
|
|
250 |
def create_entity_graph(entities):
|
251 |
G = nx.Graph()
|
252 |
for entity_type, entity_list in entities.items():
|
@@ -257,6 +290,8 @@ def create_entity_graph(entities):
|
|
257 |
G.add_edge(entity1, entity2)
|
258 |
return G
|
259 |
|
|
|
|
|
260 |
def visualize_entity_graph(G, lang_code):
|
261 |
fig, ax = plt.subplots(figsize=(12, 8))
|
262 |
pos = nx.spring_layout(G)
|
@@ -332,14 +367,7 @@ __all__ = [
|
|
332 |
'identify_key_concepts',
|
333 |
'create_concept_graph',
|
334 |
'visualize_concept_graph',
|
335 |
-
'
|
336 |
-
'visualize_entity_graph',
|
337 |
-
'generate_summary',
|
338 |
-
'extract_entities',
|
339 |
-
'analyze_sentiment',
|
340 |
-
'create_topic_graph',
|
341 |
-
'visualize_topic_graph',
|
342 |
-
'extract_topics',
|
343 |
'ENTITY_LABELS',
|
344 |
'POS_COLORS',
|
345 |
'POS_TRANSLATIONS'
|
|
|
1 |
# modules/text_analysis/semantic_analysis.py
|
|
|
2 |
|
3 |
+
# 1. Importaciones estándar del sistema
|
4 |
+
import logging
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
from collections import Counter, defaultdict
|
8 |
+
|
9 |
+
# 2. Importaciones de terceros
|
10 |
import streamlit as st
|
11 |
import spacy
|
12 |
import networkx as nx
|
13 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
14 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
15 |
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
|
17 |
+
# 3. Configuración del logger
|
18 |
logger = logging.getLogger(__name__)
|
19 |
+
logging.basicConfig(
|
20 |
+
level=logging.INFO,
|
21 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
22 |
+
)
|
23 |
|
24 |
+
# 4. Importaciones locales
|
25 |
from .stopwords import (
|
26 |
process_text,
|
27 |
get_custom_stopwords,
|
|
|
85 |
}
|
86 |
}
|
87 |
|
88 |
+
def fig_to_bytes(fig):
|
89 |
+
"""Convierte una figura de matplotlib a bytes."""
|
90 |
+
try:
|
91 |
+
buf = io.BytesIO()
|
92 |
+
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
|
93 |
+
buf.seek(0)
|
94 |
+
return buf.getvalue()
|
95 |
+
except Exception as e:
|
96 |
+
logger.error(f"Error en fig_to_bytes: {str(e)}")
|
97 |
+
return None
|
98 |
+
|
99 |
+
###########################################################
|
100 |
def perform_semantic_analysis(text, nlp, lang_code):
|
101 |
"""
|
102 |
Realiza el análisis semántico completo del texto.
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
"""
|
104 |
try:
|
105 |
logger.info(f"Starting semantic analysis for language: {lang_code}")
|
|
|
109 |
tokens = process_text(text, lang_code, nlp)
|
110 |
|
111 |
# Identificar conceptos clave
|
112 |
+
logger.info("Identificando conceptos clave...")
|
113 |
+
stopwords = get_custom_stopwords(lang_code)
|
114 |
+
key_concepts = identify_key_concepts(doc, stopwords=stopwords)
|
115 |
|
116 |
+
if not key_concepts:
|
117 |
+
logger.warning("No se identificaron conceptos clave")
|
118 |
+
return {
|
119 |
+
'success': False,
|
120 |
+
'error': 'No se pudieron identificar conceptos clave'
|
121 |
+
}
|
122 |
+
|
123 |
+
# Crear grafo de conceptos
|
124 |
+
logger.info("Creando grafo de conceptos...")
|
125 |
concept_graph = create_concept_graph(doc, key_concepts)
|
126 |
+
|
127 |
+
# Visualizar grafo
|
128 |
+
logger.info("Visualizando grafo...")
|
129 |
+
plt.clf() # Limpiar figura actual
|
130 |
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
|
131 |
+
|
132 |
+
# Convertir a bytes
|
133 |
+
logger.info("Convirtiendo grafo a bytes...")
|
134 |
+
graph_bytes = fig_to_bytes(concept_graph_fig)
|
135 |
+
|
136 |
+
if not graph_bytes:
|
137 |
+
logger.error("Error al convertir grafo a bytes")
|
138 |
+
return {
|
139 |
+
'success': False,
|
140 |
+
'error': 'Error al generar visualización'
|
141 |
+
}
|
142 |
+
|
143 |
+
# Limpiar recursos
|
144 |
+
plt.close(concept_graph_fig)
|
145 |
+
plt.close('all')
|
146 |
+
|
147 |
+
logger.info("Análisis semántico completado exitosamente")
|
148 |
return {
|
149 |
'success': True,
|
150 |
'key_concepts': key_concepts,
|
151 |
+
'concept_graph': graph_bytes
|
152 |
}
|
153 |
+
|
154 |
except Exception as e:
|
155 |
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
|
156 |
+
plt.close('all') # Asegurarse de limpiar recursos
|
157 |
return {
|
158 |
'success': False,
|
159 |
'error': str(e)
|
160 |
}
|
161 |
|
162 |
+
############################################################
|
163 |
+
|
164 |
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
165 |
"""
|
166 |
Identifica conceptos clave en el texto.
|
|
|
188 |
logger.error(f"Error en identify_key_concepts: {str(e)}")
|
189 |
return []
|
190 |
|
191 |
+
########################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
def create_concept_graph(doc, key_concepts):
|
193 |
"""
|
194 |
Crea un grafo de relaciones entre conceptos.
|
|
|
234 |
# Retornar un grafo vacío en caso de error
|
235 |
return nx.Graph()
|
236 |
|
237 |
+
###############################################################################
|
238 |
def visualize_concept_graph(G, lang_code):
|
239 |
"""
|
240 |
Visualiza el grafo de conceptos.
|
|
|
|
|
|
|
|
|
|
|
241 |
"""
|
242 |
try:
|
243 |
+
# Crear nueva figura
|
244 |
+
fig = plt.figure(figsize=(12, 8))
|
245 |
|
246 |
+
if not G.nodes():
|
247 |
+
logger.warning("Grafo vacío, retornando figura vacía")
|
248 |
+
return fig
|
249 |
+
|
250 |
+
# Calcular layout
|
251 |
+
pos = nx.spring_layout(G, k=1, iterations=50)
|
252 |
|
253 |
+
# Obtener pesos
|
254 |
node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()]
|
255 |
edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
|
256 |
|
257 |
+
# Dibujar grafo
|
258 |
nx.draw_networkx_nodes(G, pos,
|
259 |
node_size=node_weights,
|
260 |
node_color='lightblue',
|
|
|
272 |
plt.title("Red de conceptos relacionados")
|
273 |
plt.axis('off')
|
274 |
|
275 |
+
return fig
|
276 |
|
277 |
except Exception as e:
|
278 |
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
279 |
+
return plt.figure() # Retornar figura vacía en caso de error
|
|
|
280 |
|
281 |
+
|
282 |
+
########################################################################
|
283 |
def create_entity_graph(entities):
|
284 |
G = nx.Graph()
|
285 |
for entity_type, entity_list in entities.items():
|
|
|
290 |
G.add_edge(entity1, entity2)
|
291 |
return G
|
292 |
|
293 |
+
|
294 |
+
#############################################################
|
295 |
def visualize_entity_graph(G, lang_code):
|
296 |
fig, ax = plt.subplots(figsize=(12, 8))
|
297 |
pos = nx.spring_layout(G)
|
|
|
367 |
'identify_key_concepts',
|
368 |
'create_concept_graph',
|
369 |
'visualize_concept_graph',
|
370 |
+
'fig_to_bytes'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
'ENTITY_LABELS',
|
372 |
'POS_COLORS',
|
373 |
'POS_TRANSLATIONS'
|