#modules/semantic/semantic_interface.py import streamlit as st from streamlit_float import * from streamlit_antd_components import * from streamlit.components.v1 import html import spacy_streamlit import io from io import BytesIO import base64 import matplotlib.pyplot as plt import pandas as pd import re import logging # Configuración del logger logger = logging.getLogger(__name__) # Importaciones locales from .semantic_process import ( process_semantic_input, format_semantic_results ) from ..utils.widget_utils import generate_unique_key from ..database.semantic_mongo_db import store_student_semantic_result from ..database.semantic_export import export_user_interactions def display_semantic_interface(lang_code, nlp_models, semantic_t): """ Interfaz para el análisis semántico con controles alineados horizontalmente """ # Mantener la página en semántico st.session_state.page = 'semantic' # Inicializar estados si no existen if 'semantic_file_content' not in st.session_state: st.session_state.semantic_file_content = None if 'semantic_analysis_done' not in st.session_state: st.session_state.semantic_analysis_done = False if 'semantic_analysis_counter' not in st.session_state: st.session_state.semantic_analysis_counter = 0 # Estilos CSS para alinear los botones st.markdown(""" """, unsafe_allow_html=True) try: # Contenedor principal con layout fijo with st.container(): # Una sola fila para todos los controles col_file, col_analyze, col_export, col_new = st.columns([4, 2, 2, 2]) # Columna 1: Carga de archivo with col_file: uploaded_file = st.file_uploader( semantic_t.get('file_uploader', 'Upload TXT file'), type=['txt'], key=f"semantic_uploader_{st.session_state.semantic_analysis_counter}" ) if uploaded_file is not None: # Actualizar el contenido del archivo file_content = uploaded_file.getvalue().decode('utf-8') if file_content != st.session_state.semantic_file_content: st.session_state.semantic_file_content = file_content st.session_state.semantic_analysis_done = False # Columna 2: Botón de análisis with col_analyze: analyze_enabled = uploaded_file is not None and not st.session_state.semantic_analysis_done analyze_button = st.button( semantic_t.get('analyze_button', 'Analyze Text'), disabled=not analyze_enabled, key=f"analyze_button_{st.session_state.semantic_analysis_counter}", use_container_width=True ) # Columna 3: Botón de exportación with col_export: export_button = st.button( semantic_t.get('export_button', 'Export'), disabled=not st.session_state.semantic_analysis_done, key=f"export_button_{st.session_state.semantic_analysis_counter}", use_container_width=True ) # Columna 4: Botón de nuevo análisis with col_new: new_button = st.button( semantic_t.get('new_analysis', 'New Analysis'), disabled=not st.session_state.semantic_analysis_done, key=f"new_button_{st.session_state.semantic_analysis_counter}", use_container_width=True ) st.markdown("
", unsafe_allow_html=True) # Procesar análisis cuando se presiona el botón if analyze_button and st.session_state.semantic_file_content: with st.spinner(semantic_t.get('processing', 'Processing...')): try: analysis_result = process_semantic_input( st.session_state.semantic_file_content, lang_code, nlp_models, semantic_t ) if analysis_result['success']: # Guardar resultados y actualizar estado st.session_state.semantic_result = analysis_result st.session_state.semantic_analysis_done = True # Guardar en base de datos if store_student_semantic_result( st.session_state.username, st.session_state.semantic_file_content, analysis_result['analysis'] ): st.success(semantic_t.get('success_message', 'Analysis saved successfully')) display_semantic_results(analysis_result, lang_code, semantic_t) else: st.error(semantic_t.get('error_message', 'Error saving analysis')) else: st.error(analysis_result['message']) except Exception as e: logger.error(f"Error en análisis: {str(e)}") st.error(semantic_t.get('error_processing', f'Error: {str(e)}')) # Manejar exportación if export_button and st.session_state.semantic_analysis_done: try: pdf_buffer = export_user_interactions(st.session_state.username, 'semantic') st.download_button( label=semantic_t.get('download_pdf', 'Download PDF'), data=pdf_buffer, file_name="semantic_analysis.pdf", mime="application/pdf", key=f"download_{st.session_state.semantic_analysis_counter}" ) except Exception as e: st.error(f"Error exporting: {str(e)}") # Manejar nuevo análisis if new_button: st.session_state.semantic_file_content = None st.session_state.semantic_analysis_done = False st.session_state.semantic_result = None st.session_state.semantic_analysis_counter += 1 st.rerun() # Mostrar resultados existentes o mensaje inicial if st.session_state.semantic_analysis_done and 'semantic_result' in st.session_state: display_semantic_results(st.session_state.semantic_result, lang_code, semantic_t) elif not uploaded_file: st.info(semantic_t.get('initial_message', 'Upload a TXT file to begin analysis')) except Exception as e: logger.error(f"Error general: {str(e)}") st.error("Error in semantic interface. Please try again.") def display_semantic_results(result, lang_code, semantic_t): """ Muestra los resultados del análisis semántico """ if result is None or not result['success']: st.warning(semantic_t.get('no_results', 'No results available')) return analysis = result['analysis'] # Crear tabs para los resultados tab1, tab2 = st.tabs([ semantic_t.get('concepts_tab', 'Key Concepts Analysis'), semantic_t.get('entities_tab', 'Entities Analysis') ]) # Tab 1: Conceptos Clave with tab1: col1, col2 = st.columns(2) # Columna 1: Lista de conceptos with col1: st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) concept_text = "\n".join([ f"• {concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts'] ]) st.markdown(concept_text) # Columna 2: Gráfico de conceptos with col2: st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) st.image(analysis['concept_graph']) # Tab 2: Entidades with tab2: col1, col2 = st.columns(2) # Columna 1: Lista de entidades with col1: st.subheader(semantic_t.get('identified_entities', 'Identified Entities')) if 'entities' in analysis: for entity_type, entities in analysis['entities'].items(): st.markdown(f"**{entity_type}**") st.markdown("• " + "\n• ".join(entities)) # Columna 2: Gráfico de entidades with col2: st.subheader(semantic_t.get('entity_graph', 'Entities Graph')) st.image(analysis['entity_graph'])