# modules/discourse/discourse/discourse_live_interface.py import streamlit as st from streamlit_float import * from streamlit_antd_components import * import pandas as pd import logging import io import matplotlib.pyplot as plt # Configuración del logger logger = logging.getLogger(__name__) # Importaciones locales from .discourse_process import perform_discourse_analysis from .discourse_interface import display_discourse_results # Añadida esta importación from ..utils.widget_utils import generate_unique_key from ..database.discourse_mongo_db import store_student_discourse_result from ..database.chat_mongo_db import store_chat_history, get_chat_history ##################################################################################################### def fig_to_bytes(fig): """Convierte una figura de matplotlib a bytes.""" try: buf = io.BytesIO() fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') buf.seek(0) return buf.getvalue() except Exception as e: logger.error(f"Error en fig_to_bytes: {str(e)}") return None ################################################################################################# def display_discourse_live_interface(lang_code, nlp_models, discourse_t): """ Interfaz para el análisis del discurso en vivo """ try: if 'discourse_live_state' not in st.session_state: st.session_state.discourse_live_state = { 'analysis_count': 0, 'current_text1': '', 'current_text2': '', 'last_result': None, 'text_changed': False } # Crear columnas con proporción 1:3 input_col, result_col = st.columns([1, 3]) # Columna izquierda: Entrada de textos with input_col: st.subheader(discourse_t.get('enter_text', 'Ingrese sus textos')) # Primer área de texto st.markdown("**Texto 1 (Patrón)**") text_input1 = st.text_area( "Texto 1", height=250, key="discourse_live_text1", value=st.session_state.discourse_live_state.get('current_text1', ''), label_visibility="collapsed" ) st.session_state.discourse_live_state['current_text1'] = text_input1 # Segundo área de texto st.markdown("**Texto 2 (Comparación)**") text_input2 = st.text_area( "Texto 2", height=250, key="discourse_live_text2", value=st.session_state.discourse_live_state.get('current_text2', ''), label_visibility="collapsed" ) st.session_state.discourse_live_state['current_text2'] = text_input2 # Botón de análisis analyze_button = st.button( discourse_t.get('analyze_button', 'Analizar'), key="discourse_live_analyze", type="primary", icon="🔍", disabled=not (text_input1 and text_input2), use_container_width=True ) if analyze_button and text_input1 and text_input2: try: with st.spinner(discourse_t.get('processing', 'Procesando...')): result = perform_discourse_analysis( text_input1, text_input2, nlp_models[lang_code], lang_code ) if result['success']: # Procesar ambos gráficos for graph_key in ['graph1', 'graph2']: if graph_key in result and result[graph_key] is not None: bytes_key = f'{graph_key}_bytes' graph_bytes = fig_to_bytes(result[graph_key]) if graph_bytes: result[bytes_key] = graph_bytes plt.close(result[graph_key]) st.session_state.discourse_live_state['last_result'] = result st.session_state.discourse_live_state['analysis_count'] += 1 store_student_discourse_result( st.session_state.username, text_input1, text_input2, result ) else: st.error(result.get('message', 'Error en el análisis')) except Exception as e: logger.error(f"Error en análisis: {str(e)}") st.error(discourse_t.get('error_processing', f'Error al procesar el texto: {str(e)}')) # Columna derecha: Visualización de resultados with result_col: st.subheader(discourse_t.get('live_results', 'Resultados en vivo')) if 'last_result' in st.session_state.discourse_live_state and \ st.session_state.discourse_live_state['last_result'] is not None: result = st.session_state.discourse_live_state['last_result'] if all(key in result for key in ['graph1', 'graph2']): display_discourse_results(result, lang_code, discourse_t) else: logger.error(f"Faltan gráficos en el resultado: {list(result.keys())}") st.error(discourse_t.get('missing_graphs', 'Error: No se pudieron generar todos los gráficos')) else: st.info(discourse_t.get('initial_message', 'Ingrese los textos y presione Analizar para ver los resultados.')) except Exception as e: logger.error(f"Error general en interfaz del discurso en vivo: {str(e)}") st.error(discourse_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))