#modules/semantic/semantic_interface.py # Importaciones necesarias import streamlit as st from streamlit_float import * from streamlit_antd_components import * from streamlit.components.v1 import html import io from io import BytesIO import base64 import matplotlib.pyplot as plt import pandas as pd import re import logging # Configuración del logger logger = logging.getLogger(__name__) # Importaciones locales from .semantic_process import ( process_semantic_input, format_semantic_results ) from ..utils.widget_utils import generate_unique_key from ..database.semantic_mongo_db import store_student_semantic_result from ..database.semantic_export import export_user_interactions #modules/semantic/semantic_interface.py # [Mantener las importaciones igual...] def display_semantic_interface(lang_code, nlp_models, semantic_t): """ Interfaz para el análisis semántico con controles alineados horizontalmente """ try: # Inicializar estados if 'semantic_analysis_counter' not in st.session_state: st.session_state.semantic_analysis_counter = 0 if 'semantic_file_content' not in st.session_state: st.session_state.semantic_file_content = None if 'semantic_analysis_done' not in st.session_state: st.session_state.semantic_analysis_done = False # Contenedor principal para la fila de controles with st.container(): # Crear una fila con cuatro columnas de igual ancho col1, col2, col3, col4 = st.columns([3, 1, 1, 1]) # Columna 1: Carga de archivo with col1: uploaded_file = st.file_uploader( semantic_t.get('file_uploader', 'Upload TXT file'), type=['txt'], key=f"semantic_file_uploader_{st.session_state.semantic_analysis_counter}", on_change=lambda: handle_file_upload(uploaded_file) ) # Columna 2: Botón de análisis with col2: analyze_button = st.button( semantic_t.get('analyze_button', 'Analyze Text'), disabled=not st.session_state.semantic_file_content, use_container_width=True, key="analyze_semantic" ) # Columna 3: Botón de exportación with col3: export_button = st.button( semantic_t.get('export_button', 'Export Analysis'), disabled=not st.session_state.semantic_analysis_done, use_container_width=True, key="export_semantic" ) # Columna 4: Botón de nuevo análisis with col4: new_analysis_button = st.button( semantic_t.get('new_analysis_button', 'New Analysis'), disabled=not st.session_state.semantic_analysis_done, use_container_width=True, key="new_semantic" ) # Separador sutil st.markdown("
", unsafe_allow_html=True) # Procesar análisis if analyze_button and st.session_state.semantic_file_content: try: with st.spinner(semantic_t.get('processing', 'Processing...')): doc = nlp_models[lang_code](st.session_state.semantic_file_content) # Usar spacy-streamlit para las visualizaciones st.markdown("### Semantic Analysis Results") # Visualizar entidades nombradas spacy_streamlit.visualize_ner( doc, labels=nlp_models[lang_code].get_pipe("ner").labels ) # Visualizar dependencias sintácticas spacy_streamlit.visualize_parser(doc) st.session_state.semantic_analysis_done = True st.session_state.semantic_result = {'doc': doc} except Exception as e: logger.error(f"Error en análisis semántico: {str(e)}") st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}')) # Manejo de exportación if export_button and st.session_state.semantic_analysis_done: try: pdf_buffer = export_user_interactions(st.session_state.username, 'semantic') st.download_button( label=semantic_t.get('download_pdf', 'Download PDF'), data=pdf_buffer, file_name="semantic_analysis.pdf", mime="application/pdf", key=f"semantic_download_{st.session_state.semantic_analysis_counter}" ) except Exception as e: st.error(f"Error exporting analysis: {str(e)}") # Manejo de nuevo análisis if new_analysis_button: st.session_state.semantic_file_content = None st.session_state.semantic_analysis_done = False st.session_state.semantic_result = None st.session_state.semantic_analysis_counter += 1 st.rerun() # Mostrar mensaje inicial si no hay archivo if not st.session_state.semantic_file_content and not st.session_state.semantic_analysis_done: st.info(semantic_t.get('initial_message', 'Upload a TXT file to begin analysis')) except Exception as e: logger.error(f"Error general en interfaz semántica: {str(e)}") st.error("Se produjo un error. Por favor, intente de nuevo.") # [Resto del código igual...] ############################################################################################################### def display_semantic_results(result, lang_code, semantic_t): """ Muestra los resultados del análisis semántico en tabs """ if result is None or not result['success']: st.warning(semantic_t.get('no_results', 'No results available')) return analysis = result['analysis'] # Crear tabs para los resultados tab1, tab2 = st.tabs([ semantic_t.get('concepts_tab', 'Key Concepts Analysis'), semantic_t.get('entities_tab', 'Entities Analysis') ]) # Tab 1: Conceptos Clave with tab1: col1, col2 = st.columns(2) # Columna 1: Lista de conceptos with col1: st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) concept_text = "\n".join([ f"• {concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts'] ]) st.markdown(concept_text) # Columna 2: Gráfico de conceptos with col2: st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) st.image(analysis['concept_graph']) # Tab 2: Entidades with tab2: col1, col2 = st.columns(2) # Columna 1: Lista de entidades with col1: st.subheader(semantic_t.get('identified_entities', 'Identified Entities')) if 'entities' in analysis: for entity_type, entities in analysis['entities'].items(): st.markdown(f"**{entity_type}**") st.markdown("• " + "\n• ".join(entities)) # Columna 2: Gráfico de entidades with col2: st.subheader(semantic_t.get('entity_graph', 'Entities Graph')) st.image(analysis['entity_graph']) # Botón de exportación al final col1, col2, col3 = st.columns([2,1,2]) with col2: if st.button( semantic_t.get('export_button', 'Export Analysis'), key=f"semantic_export_{st.session_state.semantic_analysis_counter}", use_container_width=True ): pdf_buffer = export_user_interactions(st.session_state.username, 'semantic') st.download_button( label=semantic_t.get('download_pdf', 'Download PDF'), data=pdf_buffer, file_name="semantic_analysis.pdf", mime="application/pdf", key=f"semantic_download_{st.session_state.semantic_analysis_counter}" )