# modules/text_analysis/semantic_analysis.py # 1. Importaciones estándar del sistema import logging import io import base64 from collections import Counter, defaultdict # 2. Importaciones de terceros import streamlit as st import spacy import networkx as nx import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # Solo configurar si no hay handlers ya configurados logger = logging.getLogger(__name__) # 4. Importaciones locales from .stopwords import ( process_text, get_custom_stopwords, get_stopwords_for_spacy ) # Define colors for grammatical categories POS_COLORS = { 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', } POS_TRANSLATIONS = { 'es': { 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', 'VERB': 'Verbo', 'X': 'Otro', }, 'en': { 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', 'VERB': 'Verb', 'X': 'Other', }, 'fr': { 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', 'VERB': 'Verbe', 'X': 'Autre', } } ENTITY_LABELS = { 'es': { "Personas": "lightblue", "Lugares": "lightcoral", "Inventos": "lightgreen", "Fechas": "lightyellow", "Conceptos": "lightpink" }, 'en': { "People": "lightblue", "Places": "lightcoral", "Inventions": "lightgreen", "Dates": "lightyellow", "Concepts": "lightpink" }, 'fr': { "Personnes": "lightblue", "Lieux": "lightcoral", "Inventions": "lightgreen", "Dates": "lightyellow", "Concepts": "lightpink" } } def fig_to_bytes(fig): """Convierte una figura de matplotlib a bytes.""" try: buf = io.BytesIO() fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') buf.seek(0) return buf.getvalue() except Exception as e: logger.error(f"Error en fig_to_bytes: {str(e)}") return None ########################################################### def perform_semantic_analysis(text, nlp, lang_code): """ Realiza el análisis semántico completo del texto. """ if not text or not nlp or not lang_code: logger.error("Parámetros inválidos para el análisis semántico") return { 'success': False, 'error': 'Parámetros inválidos' } try: logger.info(f"Starting semantic analysis for language: {lang_code}") # Procesar texto y remover stopwords doc = nlp(text) if not doc: logger.error("Error al procesar el texto con spaCy") return { 'success': False, 'error': 'Error al procesar el texto' } # Identificar conceptos clave logger.info("Identificando conceptos clave...") stopwords = get_custom_stopwords(lang_code) key_concepts = identify_key_concepts(doc, stopwords=stopwords) if not key_concepts: logger.warning("No se identificaron conceptos clave") return { 'success': False, 'error': 'No se pudieron identificar conceptos clave' } # Crear grafo de conceptos logger.info(f"Creando grafo de conceptos con {len(key_concepts)} conceptos...") concept_graph = create_concept_graph(doc, key_concepts) if not concept_graph.nodes(): logger.warning("Se creó un grafo vacío") return { 'success': False, 'error': 'No se pudo crear el grafo de conceptos' } # Visualizar grafo logger.info("Visualizando grafo...") plt.clf() # Limpiar figura actual concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) # Convertir a bytes logger.info("Convirtiendo grafo a bytes...") graph_bytes = fig_to_bytes(concept_graph_fig) if not graph_bytes: logger.error("Error al convertir grafo a bytes") return { 'success': False, 'error': 'Error al generar visualización' } # Limpiar recursos plt.close(concept_graph_fig) plt.close('all') result = { 'success': True, 'key_concepts': key_concepts, 'concept_graph': graph_bytes } logger.info("Análisis semántico completado exitosamente") return result except Exception as e: logger.error(f"Error in perform_semantic_analysis: {str(e)}") plt.close('all') # Asegurarse de limpiar recursos return { 'success': False, 'error': str(e) } finally: plt.close('all') # Asegurar limpieza incluso si hay error ############################################################ def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3): """ Identifica conceptos clave en el texto. """ try: word_freq = Counter() for token in doc: if (token.lemma_.lower() not in stopwords and len(token.lemma_) >= min_length and token.is_alpha and not token.is_punct and not token.like_num): word_freq[token.lemma_.lower()] += 1 concepts = [(word, freq) for word, freq in word_freq.items() if freq >= min_freq] concepts.sort(key=lambda x: x[1], reverse=True) logger.info(f"Identified {len(concepts)} key concepts") return concepts[:10] except Exception as e: logger.error(f"Error en identify_key_concepts: {str(e)}") return [] ######################################################################## def create_concept_graph(doc, key_concepts): """ Crea un grafo de relaciones entre conceptos. Args: doc: Documento procesado por spaCy key_concepts: Lista de tuplas (concepto, frecuencia) Returns: nx.Graph: Grafo de conceptos """ try: G = nx.Graph() # Crear un conjunto de conceptos clave para búsqueda rápida concept_words = {concept[0].lower() for concept in key_concepts} # Añadir nodos al grafo for concept, freq in key_concepts: G.add_node(concept.lower(), weight=freq) # Analizar cada oración for sent in doc.sents: # Obtener conceptos en la oración actual current_concepts = [] for token in sent: if token.lemma_.lower() in concept_words: current_concepts.append(token.lemma_.lower()) # Crear conexiones entre conceptos en la misma oración for i, concept1 in enumerate(current_concepts): for concept2 in current_concepts[i+1:]: if concept1 != concept2: # Si ya existe la arista, incrementar el peso if G.has_edge(concept1, concept2): G[concept1][concept2]['weight'] += 1 # Si no existe, crear nueva arista con peso 1 else: G.add_edge(concept1, concept2, weight=1) return G except Exception as e: logger.error(f"Error en create_concept_graph: {str(e)}") # Retornar un grafo vacío en caso de error return nx.Graph() ############################################################################### def visualize_concept_graph(G, lang_code): """ Visualiza el grafo de conceptos. """ try: # Crear nueva figura fig = plt.figure(figsize=(12, 8)) if not G.nodes(): logger.warning("Grafo vacío, retornando figura vacía") return fig # Calcular layout pos = nx.spring_layout(G, k=1, iterations=50) # Obtener pesos node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()] edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()] # Dibujar grafo nx.draw_networkx_nodes(G, pos, node_size=node_weights, node_color='lightblue', alpha=0.6) nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, edge_color='gray') nx.draw_networkx_labels(G, pos, font_size=10, font_weight='bold') plt.title("Red de conceptos relacionados") plt.axis('off') return fig except Exception as e: logger.error(f"Error en visualize_concept_graph: {str(e)}") return plt.figure() # Retornar figura vacía en caso de error ######################################################################## def create_entity_graph(entities): G = nx.Graph() for entity_type, entity_list in entities.items(): for entity in entity_list: G.add_node(entity, type=entity_type) for i, entity1 in enumerate(entity_list): for entity2 in entity_list[i+1:]: G.add_edge(entity1, entity2) return G ############################################################# def visualize_entity_graph(G, lang_code): fig, ax = plt.subplots(figsize=(12, 8)) pos = nx.spring_layout(G) for entity_type, color in ENTITY_LABELS[lang_code].items(): node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) ax.axis('off') plt.tight_layout() return fig ################################################################################# def create_topic_graph(topics, doc): G = nx.Graph() for topic in topics: G.add_node(topic, weight=doc.text.count(topic)) for i, topic1 in enumerate(topics): for topic2 in topics[i+1:]: weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) if weight > 0: G.add_edge(topic1, topic2, weight=weight) return G def visualize_topic_graph(G, lang_code): fig, ax = plt.subplots(figsize=(12, 8)) pos = nx.spring_layout(G) node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) edge_weights = [G[u][v]['weight'] for u, v in G.edges()] nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) ax.axis('off') plt.tight_layout() return fig ########################################################################################### def generate_summary(doc, lang_code): sentences = list(doc.sents) summary = sentences[:3] # Toma las primeras 3 oraciones como resumen return " ".join([sent.text for sent in summary]) def extract_entities(doc, lang_code): entities = defaultdict(list) for ent in doc.ents: if ent.label_ in ENTITY_LABELS[lang_code]: entities[ent.label_].append(ent.text) return dict(entities) def analyze_sentiment(doc, lang_code): positive_words = sum(1 for token in doc if token.sentiment > 0) negative_words = sum(1 for token in doc if token.sentiment < 0) total_words = len(doc) if positive_words > negative_words: return "Positivo" elif negative_words > positive_words: return "Negativo" else: return "Neutral" def extract_topics(doc, lang_code): vectorizer = TfidfVectorizer(stop_words='english', max_features=5) tfidf_matrix = vectorizer.fit_transform([doc.text]) feature_names = vectorizer.get_feature_names_out() return list(feature_names) # Asegúrate de que todas las funciones necesarias estén exportadas __all__ = [ 'perform_semantic_analysis', 'identify_key_concepts', 'create_concept_graph', 'visualize_concept_graph', 'fig_to_bytes', # Faltaba esta coma 'ENTITY_LABELS', 'POS_COLORS', 'POS_TRANSLATIONS' ]