import streamlit as st import spacy import networkx as nx import matplotlib.pyplot as plt import pandas as pd import numpy as np from .semantic_analysis import ( create_concept_graph, visualize_concept_graph, identify_key_concepts, POS_COLORS, POS_TRANSLATIONS, ENTITY_LABELS ) def compare_semantic_analysis(text1, text2, nlp, lang): doc1 = nlp(text1) doc2 = nlp(text2) # Identificar conceptos clave para ambos documentos key_concepts1 = identify_key_concepts(doc1) key_concepts2 = identify_key_concepts(doc2) # Crear grafos de conceptos para ambos documentos G1 = create_concept_graph(doc1, key_concepts1) G2 = create_concept_graph(doc2, key_concepts2) # Visualizar los grafos de conceptos fig1 = visualize_concept_graph(G1, lang) fig2 = visualize_concept_graph(G2, lang) # Remover los títulos superpuestos fig1.suptitle("") fig2.suptitle("") return fig1, fig2, key_concepts1, key_concepts2 def create_concept_table(key_concepts): df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia']) df['Frecuencia'] = df['Frecuencia'].round(2) return df def perform_discourse_analysis(text1, text2, nlp, lang): graph1, graph2, key_concepts1, key_concepts2 = compare_semantic_analysis(text1, text2, nlp, lang) # Crear tablas de conceptos clave table1 = create_concept_table(key_concepts1) table2 = create_concept_table(key_concepts2) return { 'graph1': graph1, 'graph2': graph2, 'key_concepts1': key_concepts1, 'key_concepts2': key_concepts2 } def display_discourse_analysis_results(analysis_result, lang_code): t = get_translations(lang_code) col1, col2 = st.columns(2) with col1: with st.expander(t['doc1_title'], expanded=True): st.pyplot(analysis_result['graph1']) st.subheader(t['key_concepts']) st.table(analysis_result['table1']) with col2: with st.expander(t['doc2_title'], expanded=True): st.pyplot(analysis_result['graph2']) st.subheader(t['key_concepts']) st.table(analysis_result['table2'])