import streamlit as st from streamlit_float import * import logging import sys import io from io import BytesIO from datetime import datetime import re import base64 import matplotlib.pyplot as plt import plotly.graph_objects as go import pandas as pd import numpy as np from .flexible_analysis_handler import FlexibleAnalysisHandler from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content from .semantic_process import process_semantic_analysis from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input from ..database.database_oldFromV2 import manage_file_contents, delete_file, get_user_files from ..utils.widget_utils import generate_unique_key semantic_float_init() logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) def get_translation(t, key, default): return t.get(key, default) ## def fig_to_base64(fig): buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) img_str = base64.b64encode(buf.getvalue()).decode() return f'' ## def display_semantic_interface(lang_code, nlp_models, t): #st.set_page_config(layout="wide") if 'semantic_chatbot' not in st.session_state: st.session_state.semantic_chatbot = initialize_chatbot('semantic') if 'semantic_chat_history' not in st.session_state: st.session_state.semantic_chat_history = [] if 'show_graph' not in st.session_state: st.session_state.show_graph = False if 'graph_id' not in st.session_state: st.session_state.graph_id = None if 'semantic_chatbot' not in st.session_state: st.session_state.semantic_chatbot = initialize_chatbot('semantic') if 'semantic_chat_history' not in st.session_state: st.session_state.semantic_chat_history = [] if 'show_graph' not in st.session_state: st.session_state.show_graph = False st.markdown(""" """, unsafe_allow_html=True) st.markdown(f"""
{t['semantic_initial_message']}
""", unsafe_allow_html=True) col1, col2 = st.columns([2, 1]) with col1: st.subheader("Chat with AI") chat_container = st.container() with chat_container: st.markdown('
', unsafe_allow_html=True) for message in reversed(st.session_state.semantic_chat_history): with st.chat_message(message["role"]): st.markdown(message["content"]) st.markdown('
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) st.markdown('
', unsafe_allow_html=True) if send_button and user_input: st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) if user_input.startswith('/analyze_current'): response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) else: response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) st.rerun() if clear_button: st.session_state.semantic_chat_history = [] st.rerun() with col2: st.subheader("Document Analysis") user_files = get_user_files(st.session_state.username, 'semantic') file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] selected_file = st.selectbox("Select a file to analyze", options=file_options, key=generate_unique_key('semantic', 'file_selector')) if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): file_contents = manage_file_contents(st.session_state.username, selected_file, 'semantic') if file_contents: st.session_state.file_contents = file_contents with st.spinner("Analyzing..."): try: nlp_model = nlp_models[lang_code] logger.debug("Calling process_semantic_analysis") analysis_result = process_semantic_analysis(file_contents, nlp_model, lang_code) # Crear una instancia de FlexibleAnalysisHandler con los resultados del anĂ¡lisis handler = FlexibleAnalysisHandler(analysis_result) logger.debug(f"Type of analysis_result: {type(analysis_result)}") logger.debug(f"Keys in analysis_result: {analysis_result.keys() if isinstance(analysis_result, dict) else 'Not a dict'}") st.session_state.concept_graph = handler.get_concept_graph() st.session_state.entity_graph = handler.get_entity_graph() st.session_state.key_concepts = handler.get_key_concepts() st.session_state.show_graph = True st.success("Analysis completed successfully") except Exception as e: logger.error(f"Error during analysis: {str(e)}") st.error(f"Error during analysis: {str(e)}") else: st.error("Error loading file contents") else: st.error("Please select a file to analyze") st.subheader("File Management") uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) if uploaded_file is not None: file_contents = uploaded_file.getvalue().decode('utf-8') if manage_file_contents(st.session_state.username, uploaded_file.name, file_contents): st.success(f"File {uploaded_file.name} uploaded and saved successfully") else: st.error("Error uploading file") st.markdown("---") st.subheader("Manage Uploaded Files") user_files = get_user_files(st.session_state.username, 'semantic') if user_files: for file in user_files: col1, col2 = st.columns([3, 1]) with col1: st.write(file['file_name']) with col2: if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): if delete_file(st.session_state.username, file['file_name'], 'semantic'): st.success(f"File {file['file_name']} deleted successfully") st.rerun() else: st.error(f"Error deleting file {file['file_name']}") else: st.info("No files uploaded yet.") ######################################################################################################################### # Floating graph visualization if st.session_state.show_graph: if st.session_state.graph_id is None: st.session_state.graph_id = float_graph( content="
Loading graph...
", width="40%", height="60%", position="bottom-right", shadow=2, transition=1 ) graph_id = st.session_state.graph_id if 'key_concepts' in st.session_state: key_concepts_html = "

Key Concepts:

" + ', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts]) + "

" update_float_content(graph_id, key_concepts_html) tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) with tab_concept: if 'concept_graph' in st.session_state: update_float_content(graph_id, st.session_state.concept_graph) else: update_float_content(graph_id, "No concept graph available.") with tab_entity: if 'entity_graph' in st.session_state: update_float_content(graph_id, st.session_state.entity_graph) else: update_float_content(graph_id, "No entity graph available.") if st.button("Close Graph", key="close_graph"): toggle_float_visibility(graph_id, False) st.session_state.show_graph = False st.session_state.graph_id = None st.rerun()