import streamlit as st from .semantic_process import process_semantic_analysis from ..chatbot.chatbot import initialize_chatbot from ..database.database_oldFromV2 import store_semantic_result from ..text_analysis.semantic_analysis import perform_semantic_analysis from ..utils.widget_utils import generate_unique_key def display_semantic_interface(lang_code, nlp_models, t): st.subheader(t['title']) # Inicializar el chatbot si no existe if 'semantic_chatbot' not in st.session_state: st.session_state.semantic_chatbot = initialize_chatbot('semantic') # Sección para cargar archivo uploaded_file = st.file_uploader(t['file_uploader'], type=['txt', 'pdf', 'docx', 'doc', 'odt']) if uploaded_file: file_contents = uploaded_file.getvalue().decode('utf-8') st.session_state.file_contents = file_contents # Mostrar el historial del chat chat_history = st.session_state.get('semantic_chat_history', []) for message in chat_history: with st.chat_message(message["role"]): st.write(message["content"]) if "visualization" in message: st.pyplot(message["visualization"]) # Input del usuario user_input = st.chat_input(t['semantic_initial_message'], key=generate_unique_key('semantic', st.session_state.username)) if user_input: # Procesar el input del usuario response, visualization = process_semantic_analysis(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents'), t) # Actualizar el historial del chat chat_history.append({"role": "user", "content": user_input}) chat_history.append({"role": "assistant", "content": response, "visualization": visualization}) st.session_state.semantic_chat_history = chat_history # Mostrar el resultado más reciente with st.chat_message("assistant"): st.write(response) if visualization: st.pyplot(visualization) # Guardar el resultado en la base de datos si es un análisis if user_input.startswith('/analisis_semantico'): result = perform_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code) store_semantic_result(st.session_state.username, st.session_state.file_contents, result) # Botón para limpiar el historial del chat if st.button(t['clear_chat'], key=generate_unique_key('semantic', 'clear_chat')): st.session_state.semantic_chat_history = [] st.rerun()