import streamlit as st
from .semantic_process import process_semantic_analysis
from ..chatbot.chatbot import initialize_chatbot
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
from ..utils.widget_utils import generate_unique_key
def get_translation(t, key, default):
return t.get(key, default)
def display_semantic_interface(lang_code, nlp_models, t):
#st.set_page_config(layout="wide")
# Estilo CSS personalizado
st.markdown("""
""", unsafe_allow_html=True)
# Mostrar el mensaje inicial como un párrafo estilizado
st.markdown(f"""
{get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
""", unsafe_allow_html=True)
# Inicializar el chatbot si no existe
if 'semantic_chatbot' not in st.session_state:
st.session_state.semantic_chatbot = initialize_chatbot('semantic')
# Contenedor para la gestión de archivos
with st.container():
st.markdown('', unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
if st.button(get_translation(t, 'upload_file', 'Upload File'), key=generate_unique_key('semantic', 'upload_button')):
uploaded_file = st.file_uploader(get_translation(t, 'file_uploader', 'Choose a file'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
if uploaded_file is not None:
file_contents = uploaded_file.getvalue().decode('utf-8')
if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved to database successfully'))
st.session_state.file_contents = file_contents
st.rerun()
else:
st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
with col2:
user_files = get_user_files(st.session_state.username, 'semantic')
file_options = [get_translation(t, 'select_file', 'Select a file')] + [file['file_name'] for file in user_files]
selected_file = st.selectbox(get_translation(t, 'file_list', 'File List'), options=file_options, key=generate_unique_key('semantic', 'file_selector'))
if selected_file != get_translation(t, 'select_file', 'Select a file'):
if st.button(get_translation(t, 'load_file', 'Load File'), key=generate_unique_key('semantic', 'load_file')):
file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
if file_contents:
st.session_state.file_contents = file_contents
st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully'))
else:
st.error(get_translation(t, 'file_load_error', 'Error loading file'))
with col3:
if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')):
if 'file_contents' in st.session_state:
with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')):
graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code)
st.session_state.graph = graph
st.session_state.key_concepts = key_concepts
st.success(get_translation(t, 'analysis_completed', 'Analysis completed'))
else:
st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded'))
with col4:
if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')):
if selected_file and selected_file != get_translation(t, 'select_file', 'Select a file'):
if delete_file(st.session_state.username, selected_file, 'semantic'):
st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully'))
if 'file_contents' in st.session_state:
del st.session_state.file_contents
st.rerun()
else:
st.error(get_translation(t, 'file_delete_error', 'Error deleting file'))
else:
st.error(get_translation(t, 'no_file_selected', 'No file selected'))
st.markdown('
', unsafe_allow_html=True)
# Crear dos columnas: una para el chat y otra para la visualización
col_chat, col_graph = st.columns([1, 1])
with col_chat:
st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
# Chat interface
chat_container = st.container()
with chat_container:
# Mostrar el historial del chat
chat_history = st.session_state.get('semantic_chat_history', [])
for message in chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
# Input del usuario
user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
if user_input:
# Añadir el mensaje del usuario al historial
chat_history.append({"role": "user", "content": user_input})
# Generar respuesta del chatbot
chatbot = st.session_state.semantic_chatbot
response = chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents'))
# Añadir la respuesta del chatbot al historial
chat_history.append({"role": "assistant", "content": response})
# Actualizar el historial en session_state
st.session_state.semantic_chat_history = chat_history
# Forzar la actualización de la interfaz
st.rerun()
with col_graph:
st.subheader(get_translation(t, 'graph_title', 'Semantic Graph'))
# Mostrar conceptos clave en un expander horizontal
with st.expander(get_translation(t, 'key_concepts_title', 'Key Concepts'), expanded=True):
if 'key_concepts' in st.session_state:
st.markdown('', unsafe_allow_html=True)
for concept, freq in st.session_state.key_concepts:
st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
if 'graph' in st.session_state:
st.pyplot(st.session_state.graph)
# Botón para limpiar el historial del chat
if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
st.session_state.semantic_chat_history = []
st.rerun()