import streamlit as st import logging import time from .semantic_process import process_semantic_analysis from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files from ..utils.widget_utils import generate_unique_key logger = logging.getLogger(__name__) def get_translation(t, key, default): return t.get(key, default) def display_semantic_interface(lang_code, nlp_models, t): # Inicializar el chatbot y el historial del chat al principio de la función if 'semantic_chatbot' not in st.session_state: st.session_state.semantic_chatbot = initialize_chatbot('semantic') if 'semantic_chat_history' not in st.session_state: st.session_state.semantic_chat_history = [] st.markdown(""" """, unsafe_allow_html=True) # Mostrar el mensaje inicial como un párrafo estilizado st.markdown(f"""
""", unsafe_allow_html=True) tab1, tab2 = st.tabs(["Upload", "Analyze"]) with tab1: st.subheader("File Management") uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) if uploaded_file is not None: file_contents = uploaded_file.getvalue().decode('utf-8') if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): st.success(f"File {uploaded_file.name} uploaded and saved successfully") else: st.error("Error uploading file") st.markdown("---") # Línea separadora st.subheader("Manage Uploaded Files") user_files = get_user_files(st.session_state.username, 'semantic') if user_files: for file in user_files: col1, col2 = st.columns([3, 1]) with col1: st.write(file['file_name']) with col2: if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): if delete_file(st.session_state.username, file['file_name'], 'semantic'): st.success(f"File {file['file_name']} deleted successfully") st.rerun() else: st.error(f"Error deleting file {file['file_name']}") else: st.info("No files uploaded yet.") with tab2: st.subheader("Select File for Analysis") user_files = get_user_files(st.session_state.username, 'semantic') file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) if st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')): if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') if file_contents: st.session_state.file_contents = file_contents with st.spinner("Analyzing..."): try: nlp_model = nlp_models[lang_code] concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) st.session_state.concept_graph = concept_graph st.session_state.entity_graph = entity_graph st.session_state.key_concepts = key_concepts st.success("Analysis completed successfully") except Exception as e: logger.error(f"Error during analysis: {str(e)}") st.error(f"Error during analysis: {str(e)}") else: st.error("Error loading file contents") else: st.error("Please select a file to analyze") # Chat and Visualization --1 with st.container(): col_chat, col_graph = st.columns([1, 1]) with col_chat: st.subheader("Chat with AI") # Create a container for the chat messages chat_container = st.container() # Display chat messages from history on app rerun with chat_container: for message in st.session_state.semantic_chat_history: with st.chat_message(message["role"]): st.markdown(message["content"]) user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) col1, col2 = st.columns([3, 1]) with col1: send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) with col2: clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) if send_button and user_input: st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) if user_input.startswith('/analyze_current'): response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) else: response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) st.rerun() if clear_button: st.session_state.semantic_chat_history = [] st.rerun() ''' # Accept user input if prompt := st.chat_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')): # Add user message to chat history st.session_state.semantic_chat_history.append({"role": "user", "content": prompt}) # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Generate and display assistant response with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" if prompt.startswith('/analyze_current'): assistant_response = process_semantic_chat_input(prompt, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) else: assistant_response = st.session_state.semantic_chatbot.generate_response(prompt, lang_code, context=st.session_state.get('file_contents', '')) # Simulate stream of response with milliseconds delay for chunk in assistant_response.split(): full_response += chunk + " " time.sleep(0.05) # Add a blinking cursor to simulate typing message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) # Add assistant response to chat history st.session_state.semantic_chat_history.append({"role": "assistant", "content": full_response}) # Add a clear chat button if st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')): st.session_state.semantic_chat_history = [{"role": "assistant", "content": "Chat cleared. How can I assist you?"}] st.rerun() ''' ''' with col_graph: st.subheader("Visualization") if 'key_concepts' in st.session_state: st.write("Key Concepts:") st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) with tab_concept: if 'concept_graph' in st.session_state: st.pyplot(st.session_state.concept_graph) else: st.info("No concept graph available. Please analyze a document first.") with tab_entity: if 'entity_graph' in st.session_state: st.pyplot(st.session_state.entity_graph) else: st.info("No entity graph available. Please analyze a document first.") '''