import streamlit as st import logging from .semantic_process import process_semantic_analysis from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files from ..utils.widget_utils import generate_unique_key from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content logger = logging.getLogger(__name__) semantic_float_init() def get_translation(t, key, default): return t.get(key, default) def display_semantic_interface(lang_code, nlp_models, t): # Inicializar el chatbot y el historial del chat al principio de la función if 'semantic_chatbot' not in st.session_state: st.session_state.semantic_chatbot = initialize_chatbot('semantic') if 'semantic_chat_history' not in st.session_state: st.session_state.semantic_chat_history = [] st.markdown(""" """, unsafe_allow_html=True) # Mostrar el mensaje inicial como un párrafo estilizado st.markdown(f"""
{t['semantic_initial_message']}
""", unsafe_allow_html=True) tab1, tab2 = st.tabs(["Upload", "Analyze"]) with tab1: st.subheader("File Management") uploaded_file = st.file_uploader("Choose a file to upload", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) if uploaded_file is not None: file_contents = uploaded_file.getvalue().decode('utf-8') if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): st.success(f"File {uploaded_file.name} uploaded and saved successfully") else: st.error("Error uploading file") st.markdown("---") # Línea separadora st.subheader("Manage Uploaded Files") user_files = get_user_files(st.session_state.username, 'semantic') if user_files: for file in user_files: col1, col2 = st.columns([3, 1]) with col1: st.write(file['file_name']) with col2: if st.button("Delete", key=f"delete_{file['file_name']}", help=f"Delete {file['file_name']}"): if delete_file(st.session_state.username, file['file_name'], 'semantic'): st.success(f"File {file['file_name']} deleted successfully") st.rerun() else: st.error(f"Error deleting file {file['file_name']}") else: st.info("No files uploaded yet.") with tab2: st.subheader("Select File for Analysis") user_files = get_user_files(st.session_state.username, 'semantic') file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) if st.button("Analyze Document"): if selected_file and selected_file != get_translation(t, 'select_saved_file', 'Select a saved file'): file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic') if file_contents: with st.spinner("Analyzing..."): try: nlp_model = nlp_models[lang_code] concept_graph, entity_graph, key_concepts = process_semantic_analysis(file_contents, nlp_model, lang_code) st.session_state.concept_graph = concept_graph st.session_state.entity_graph = entity_graph st.session_state.key_concepts = key_concepts st.success("Analysis completed successfully") # Crear el grafo flotante if 'graph_id' not in st.session_state: st.session_state.graph_id = float_graph( content="
Loading graph...
", width="40%", height="60%", position="bottom-right", shadow=2, transition=1 ) # Actualizar el contenido del grafo flotante update_float_content(st.session_state.graph_id, f"""

Key Concepts:

{', '.join([f"{concept}: {freq:.2f}" for concept, freq in key_concepts])}

Concept Graph """) except Exception as e: logger.error(f"Error during analysis: {str(e)}") st.error(f"Error during analysis: {str(e)}") st.session_state.concept_graph = None st.session_state.entity_graph = None st.session_state.key_concepts = [] else: st.error("Error loading file contents") else: st.error("Please select a file to analyze") # Chat and Visualization with st.container(): col_chat, col_graph = st.columns([1, 1]) with col_chat: with st.expander("Chat with AI", expanded=True): chat_container = st.container() with chat_container: for message in st.session_state.semantic_chat_history: with st.chat_message(message["role"]): st.markdown(message["content"]) user_input = st.text_input("Type your message here...", key=generate_unique_key('semantic', 'chat_input')) col1, col2 = st.columns([3, 1]) with col1: send_button = st.button("Send", key=generate_unique_key('semantic', 'send_message')) with col2: clear_button = st.button("Clear Chat", key=generate_unique_key('semantic', 'clear_chat')) if send_button and user_input: st.session_state.semantic_chat_history.append({"role": "user", "content": user_input}) if user_input.startswith('/analyze_current'): response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) else: response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents', '')) st.session_state.semantic_chat_history.append({"role": "assistant", "content": response}) st.rerun() if clear_button: st.session_state.semantic_chat_history = [] st.rerun() with col_graph: st.subheader("Visualization") if 'key_concepts' in st.session_state: st.write("Key Concepts:") st.write(', '.join([f"{concept}: {freq:.2f}" for concept, freq in st.session_state.key_concepts])) tab_concept, tab_entity = st.tabs(["Concept Graph", "Entity Graph"]) with tab_concept: if 'concept_graph' in st.session_state and st.session_state.concept_graph: st.image(st.session_state.concept_graph) else: st.info("No concept graph available. Please analyze a document first.") with tab_entity: if 'entity_graph' in st.session_state and st.session_state.entity_graph: st.image(st.session_state.entity_graph) else: st.info("No entity graph available. Please analyze a document first.") # Botón para cerrar el grafo flotante if st.button("Close Graph", key="close_graph"): if 'graph_id' in st.session_state: toggle_float_visibility(st.session_state.graph_id, False) del st.session_state.graph_id