import streamlit as st import logging from io import BytesIO import base64 from .semantic_float_reset import semantic_float_init, float_graph, toggle_float_visibility, update_float_content from .semantic_process import process_semantic_analysis from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input from ..database.database_oldFromV2 import ( initialize_mongodb_connection, initialize_database_connections, create_admin_user, create_student_user, get_user, get_student_data, store_file_contents, retrieve_file_contents, get_user_files, delete_file, store_application_request, store_user_feedback, store_morphosyntax_result, store_semantic_result, store_discourse_analysis_result, store_chat_history, export_analysis_and_chat, get_user_analysis_summary, get_user_recents_chats, get_user_analysis_details ) from ..utils.widget_utils import generate_unique_key from .flexible_analysis_handler import FlexibleAnalysisHandler semantic_float_init() logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) def get_translation(t, key, default): return t.get(key, default) def fig_to_base64(fig): buf = BytesIO() fig.savefig(buf, format='png') buf.seek(0) img_str = base64.b64encode(buf.getvalue()).decode() return f'' def display_semantic_interface(lang_code, nlp_models, t): st.set_page_config(layout="wide") if 'semantic_chatbot' not in st.session_state: st.session_state.semantic_chatbot = initialize_chatbot('semantic') if 'semantic_chat_history' not in st.session_state: st.session_state.semantic_chat_history = [] if 'show_graph' not in st.session_state: st.session_state.show_graph = False if 'graph_id' not in st.session_state: st.session_state.graph_id = None st.header(t['title']) # Opción para introducir texto text_input = st.text_area( t['text_input_label'], height=150, placeholder=t['text_input_placeholder'], ) # Opción para cargar archivo uploaded_file = st.file_uploader(t['file_uploader'], type=['txt']) if st.button(t['analyze_button']): if text_input or uploaded_file is not None: if uploaded_file: text_content = uploaded_file.getvalue().decode('utf-8') else: text_content = text_input # Realizar el análisis analysis_result = process_semantic_analysis(text_content, nlp_models[lang_code], lang_code) # Guardar el resultado en el estado de la sesión st.session_state.semantic_result = analysis_result # Mostrar resultados display_semantic_results(st.session_state.semantic_result, lang_code, t) # Guardar el resultado del análisis if store_semantic_result(st.session_state.username, text_content, analysis_result): st.success(t['success_message']) else: st.error(t['error_message']) else: st.warning(t['warning_message']) elif 'semantic_result' in st.session_state: # Si hay un resultado guardado, mostrarlo display_semantic_results(st.session_state.semantic_result, lang_code, t) else: st.info(t['initial_message']) # Asegúrate de que 'initial_message' esté en tus traducciones def display_semantic_results(result, lang_code, t): if result is None: st.warning(t['no_results']) # Asegúrate de que 'no_results' esté en tus traducciones return # Mostrar conceptos clave with st.expander(t['key_concepts'], expanded=True): concept_text = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in result['key_concepts']]) st.write(concept_text) # Mostrar el gráfico de relaciones conceptuales with st.expander(t['conceptual_relations'], expanded=True): st.pyplot(result['relations_graph'])