import streamlit as st
import logging
from .semantic_process import process_semantic_analysis
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
from ..utils.widget_utils import generate_unique_key
logger = logging.getLogger(__name__)
def get_translation(t, key, default):
return t.get(key, default)
def display_semantic_interface(lang_code, nlp_models, t):
# Inicializar el chatbot al principio de la función
if 'semantic_chatbot' not in st.session_state:
st.session_state.semantic_chatbot = initialize_chatbot('semantic')
st.markdown("""
""", unsafe_allow_html=True)
st.markdown(f"""
{get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
""", unsafe_allow_html=True)
# File management container
st.markdown('', unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
if st.button("Upload File", key=generate_unique_key('semantic', 'upload_button')):
st.session_state.show_uploader = True
with col2:
user_files = get_user_files(st.session_state.username, 'semantic')
file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
with col3:
analyze_button = st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document'))
with col4:
delete_button = st.button("Delete File", key=generate_unique_key('semantic', 'delete_file'))
st.markdown('
', unsafe_allow_html=True)
# File uploader (hidden by default)
if st.session_state.get('show_uploader', False):
uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
if uploaded_file is not None:
file_contents = uploaded_file.getvalue().decode('utf-8')
if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
st.session_state.file_contents = file_contents
st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully'))
st.session_state.show_uploader = False # Hide uploader after successful upload
else:
st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
# Contenedor para la sección de análisis
st.markdown('', unsafe_allow_html=True)
col_chat, col_graph = st.columns([1, 1])
with col_chat:
st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
chat_container = st.container()
with chat_container:
chat_history = st.session_state.get('semantic_chat_history', [])
for message in chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
if user_input:
chat_history.append({"role": "user", "content": user_input})
if user_input.startswith('/analyze_current'):
response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
else:
response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
chat_history.append({"role": "assistant", "content": response})
st.session_state.semantic_chat_history = chat_history
with col_graph:
st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs'))
# Mostrar conceptos clave y entidades horizontalmente
if 'key_concepts' in st.session_state:
st.write(get_translation(t, 'key_concepts_title', 'Key Concepts'))
st.markdown('
', unsafe_allow_html=True)
for concept, freq in st.session_state.key_concepts:
st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
if 'entities' in st.session_state:
st.write(get_translation(t, 'entities_title', 'Entities'))
st.markdown('
', unsafe_allow_html=True)
for entity, type in st.session_state.entities.items():
st.markdown(f'{entity}: {type}', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
# Usar pestañas para mostrar los gráficos
tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"])
with tab1:
if 'concept_graph' in st.session_state:
st.pyplot(st.session_state.concept_graph)
with tab2:
if 'entity_graph' in st.session_state:
st.pyplot(st.session_state.entity_graph)
st.markdown('
', unsafe_allow_html=True)
if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
st.session_state.semantic_chat_history = []
st.rerun()