import streamlit as st import logging from .semantic_process import process_semantic_analysis from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files from ..utils.widget_utils import generate_unique_key logger = logging.getLogger(__name__) def get_translation(t, key, default): return t.get(key, default) def display_semantic_interface(lang_code, nlp_models, t): # Inicializar el chatbot al principio de la función if 'semantic_chatbot' not in st.session_state: st.session_state.semantic_chatbot = initialize_chatbot('semantic') st.markdown(""" """, unsafe_allow_html=True) st.markdown(f"""
{get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
""", unsafe_allow_html=True) # File management container st.markdown('
', unsafe_allow_html=True) col1, col2, col3, col4 = st.columns(4) with col1: if st.button("Upload File", key=generate_unique_key('semantic', 'upload_button')): st.session_state.show_uploader = True with col2: user_files = get_user_files(st.session_state.username, 'semantic') file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files] selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector')) with col3: analyze_button = st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document')) with col4: delete_button = st.button("Delete File", key=generate_unique_key('semantic', 'delete_file')) st.markdown('
', unsafe_allow_html=True) # File uploader (hidden by default) if st.session_state.get('show_uploader', False): uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader')) if uploaded_file is not None: file_contents = uploaded_file.getvalue().decode('utf-8') if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents): st.session_state.file_contents = file_contents st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully')) st.session_state.show_uploader = False # Hide uploader after successful upload else: st.error(get_translation(t, 'file_upload_error', 'Error uploading file')) # Contenedor para la sección de análisis st.markdown('
', unsafe_allow_html=True) col_chat, col_graph = st.columns([1, 1]) with col_chat: st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat')) chat_container = st.container() with chat_container: chat_history = st.session_state.get('semantic_chat_history', []) for message in chat_history: with st.chat_message(message["role"]): st.write(message["content"]) user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input')) if user_input: chat_history.append({"role": "user", "content": user_input}) if user_input.startswith('/analyze_current'): response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', '')) else: response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code) chat_history.append({"role": "assistant", "content": response}) st.session_state.semantic_chat_history = chat_history with col_graph: st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs')) # Mostrar conceptos clave y entidades horizontalmente if 'key_concepts' in st.session_state: st.write(get_translation(t, 'key_concepts_title', 'Key Concepts')) st.markdown('
', unsafe_allow_html=True) for concept, freq in st.session_state.key_concepts: st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) if 'entities' in st.session_state: st.write(get_translation(t, 'entities_title', 'Entities')) st.markdown('
', unsafe_allow_html=True) for entity, type in st.session_state.entities.items(): st.markdown(f'{entity}: {type}', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # Usar pestañas para mostrar los gráficos tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"]) with tab1: if 'concept_graph' in st.session_state: st.pyplot(st.session_state.concept_graph) with tab2: if 'entity_graph' in st.session_state: st.pyplot(st.session_state.entity_graph) st.markdown('
', unsafe_allow_html=True) if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')): st.session_state.semantic_chat_history = [] st.rerun()